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Abstract  A predominant benefit of social living is the ability to share knowledge that cannot be gained through the information 

an individual accumulates based on its personal experience alone. Traditional computational models have portrayed sharing 

knowledge through interactions among members of social groups via dyadic networks. Such models aim at understanding the 

percolation of information among individuals and groups to identify potential limitations to successful knowledge transfer. How-

ever, because many real-world interactions are not solely pairwise, i.e., several group members may obtain information from one 

another simultaneously, it is necessary to understand more than dyadic communication and learning processes to capture their full 

complexity. We detail a modeling framework based on the simplicial set, a concept from algebraic topology, which allows elegant 

encapsulation of multi-agent interactions. Such a model system allows us to analyze how individual information within groups 

accumulates as the group's collective set of knowledge, which may be different than the simple union of individually contained 

information. Furthermore, the simplicial modeling approach we propose allows us to investigate how information accumulates via 

sub-group interactions, offering insight into complex aspects of multi-way communication systems. The fundamental change in 

modeling strategy we offer here allows us to move from portraying knowledge as a “token”, passed from signaler to receiver, to 

portraying knowledge as a set of accumulating building blocks from which novel ideas can emerge. We provide an explanation of 

relevant mathematical concepts in a way that promotes accessibility to a general audience [Current Zoology 61 (1): 114–127, 2015]. 
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1  Background 

Network-based methods have yielded great success 
elucidating many questions about group structure and 
function based on pairwise interactions. Efforts to cap-
ture interactions between (and implicitly, though in-
completely, among) individuals in groups have thus far 
relied primarily on network representations, in which 
each individual in the population is represented by a 
vertex, and interactions between two vertices are repre-
sented by an edge. These types of models reveal a struc-
ture to the set of interactions which can uncover func-
tions of systems such as food webs (Dunne, 2002; Elton, 
1936; Lewis et al., 2002; Memmott et al., 2004; Mon-
toya, 2002; Paine, 1966; Pimm and Lawton, 1977; Sole 
and Montoya, 2001; Williams, 2002) and mutualistic 
interaction networks in ecology (Bascompte et al., 2003, 
Bascompte et al., 2006, Ings et al., 2009; Proulx et al., 
2005; Stanko, 2011), and more generally for examining 
decentralized decision-making in multi-agent systems 

(Bode et al., 2011; Gordon, 2002; Olfati-Saber et al., 
2007). Elucidation of the structure of these interaction 
networks allows rigorous examination of various beha-
vioral processes (reviewed in Pinter-Wollman et al., 
2014). Some examples include organizational features 
such as rankings and orderings e.g. social hierarchies 
(de Silva et al., 2011; Hobson et al., 2015; Dey et al., 
2015), consumer/producer relationships (Berlow et al., 
2009); interactions in aggression (Beisner et al., 2015), 
mating (Inghilesi et al., 2015), cooperation (Franz et al., 
2015), or communication (Crofoot et al., 2011); and 
percolation such as energy flow in food networks 
(Thompson et al., 2005) or opinion adoption in social 
insects (Fewell, 2003). Furthermore, we can examine 
how local changes to interactions affect global out-
comes i.e., the effects of selfish individual behaviors on 
the organizational efficiency of social populations (Hock 
et al., 2010). Net-works are well suited to examine these 
phenomena because they provide a rigorous framework 
and structure to the aggregate of pairwise relationships 
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between individuals and provide a method of compari-
son between seemingly unrelated systems (Milo et al., 
2002). 

Many important properties of social groups exceed 
the union of dyadic interactions and cannot be effi-
ciently captured using basic network models. Particu-
larly, multi-way interactions and identification of func-
tional sub-groups are constrained using traditional net-
work analysis methods. For example, if four individuals 
communicate with one another, the network representa-
tion of this group scenario is the complete graph on four 
vertices (Fig. 1B). However, this network depiction 
cannot express whether the communication that took 
place was, in fact, among all four individuals as a group, 
depicted in the 3-dimensional object indicating simul-
taneous interaction in Fig. 1A, or whether they occurred 
as six independent pairwise transfers of information, 
shown in Fig. 1B. Potentially important aspects of the 
interactions within this group, such as simultaneous in-
formation exchange among three members, exceed the 
union of the pairwise relationships depicted, and would 
thus exceed the representational and computational me-
thodologies of a simple network. We propose the use of 
simplicial models which would generalize traditional 
network approaches by allowing us to encapsulate ex-
plicit group interactions of more than two simultaneous 
participants and, critically, to designate which groups 
are participating subgroups of others. This tool includes 
network analysis as the simplest form of simplicial 
models, but further allows us to exploit the already de-
veloped and studied constructs for analysis of higher-    

 

 
 

Fig. 1  Simplicial set representations of communication in 
a group of 4 
Simplicial set representations of two of several possible communica-
tion scenarios in a group of 4 individuals. A. a 3-simplex denotes that 
all four individuals are participating in a group conversation. B. Six 
different 1-simplices denote that each individual is speaking to every 
other individual pairwise and privately. Such differentiation between 
the two types of communication modes is not possible using the tradi-
tional network representation, as both scenarios would have a network 
representation as shown in B. 

order groups from homology theory (Friedman, 2008; 
Goerss and Jardine, 2009; May, 1992; Spivak, 2009). 
Here we show how simplicial set representations can be 
used to complement existing network techniques to bet-
ter describe socially mediated transmission of informa-
tion. We first introduce simplicial modeling and high-
light how it differs from social network analysis. We 
then provide examples of behavioral processes that can 
benefit from incorporating this framework followed by 
a specific application. We conclude the paper by high-
lighting the insights about animal societies that can be 
gained by using simplicial modeling. 

2  An Introduction to Simplicial  
Modeling 

Simplicial modeling differs from social network 
analysis in how it represents interactions. Traditional 
networks depict each individual in the group as a node 
(or vertex) and the interactions between these individu-
als as links (or edges) between pairs of vertices. Recent 
work has advocated the use of the simplex as a funda-
mental representation of interactions between individual 
entities within a social group making it possible to re-
present more than dyadic interactions (Kee et al., 2013; 
Moore et al., 2012; Ramanathan et al., 2011; Spivak, 
2009). A simplex can be visualized most easily as an n-  
dimensional polygon determined by n + 1 points (Fig. 2). 
For example, a triangle together with its interior deter-
mined by its three vertices is a 2-dimensional simplex 
(or 2-simplex). A tetrahedron together with its interior 
determined by its four vertices is a 3-simplex, and so on. 
Finally, note that by this definition, an edge in a tradi-
tional graph fits the definition of a 1-simplex. The ex-
pansion of the traditional network model to higher di-
mensionality using simplices is intuitive, in that each 
individual in the group is represented by a 0-simplex (or 
vertex) and each k-simplex is representative of some 
interaction that has occurred among the (k+1) vertices 
that comprise the simplex. If we then “glue” multiple 
simplices together along particular faces (Fig. 3), we 
have constructed a simplicial set (or more restrictively, 
a semi-simplicial set or a simplicial complex (Munkres, 
1984; Spanier, 1994)). A formal definition of each term 
is given in Appendix 1.  

Simplicial sets have been well-studied as mathemat-
ical constructs in algebraic topology, but little work has 
been invested in applying them to group interaction 
dynamics. Simplicial models allow us to represent multi- 
individual (multi-vertex) encounters as simplices, there-
by enabling us to define biologically important pro- 
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Fig. 2  Geometric representation of a simplex 
A simplex is the generalization of a tetrahedron to n dimensions. A k-simplex can be represented geometrically as the polyhedral hull of (k+1) ver-
tices. A 0-simplex is a point or vertex, and simple geometric representations of a 1-, 2-, and 3-simplex are represented here in A, B, and C, respec-
tively. 
 

 
 

Fig. 3  An example (semi)-simplicial set 
An elementary simplicial set constructed from four 0-simplices, five 
1-simplices, and one 2-simplex shown by the grey triangle (v1, v3, v4). 
This topology also satisfies the more restrictive definition of a semi-   
simplicial set, because it does not contain any degenerate simplices 
(i.e., simplices with repeated vertices). 

 

cesses, such as learning as a function of group size. Re-
presentation of such multi-individual encounters using 
traditional network models would not differ from the 
discretion of many pairwise interactions. Simplicial sets 
can also denote explicit sub-conversations and their 
relationship to one another through the use of face maps 
(a part of the formal definition of simplicial sets, see 
Appendix 1). Simplicial sets are generalizations of net-
works in that a network is itself a 1-dimensional simpli-
cial set. Conversely, the 1-skeleton of a particular sim-
plicial set is the set of all 0-simplices (vertices) and 
1-simplices (edges) and is a network by definition. Note 
however that because we lose information about the 
system when we move from a multi-dimensional sim-
plicial set to the 1-skeleton (or network), it is not possi-
ble to recover the original simplicial set from the infor-
mation contained in the 1-skeleton. This further implies 
that unique simplicial sets could reduce to the same 
1-skeleton. Finally, as with any modeling approach, it is 
important to note that it is not always necessary to 

choose the most complex tool when a simpler one will 
suffice.  

3  Using Simplicial Models to Study 
Social Processes in Animal Groups 

Communication of social animals can occur among 
multiple individuals simultaneously, within groups, be-

tween groups, and sometimes across species. The dy-
namics of such multi-agent communication are lost 

when using only traditional network approaches. Here 

we review various fields in animal behavior that may 
benefit from employing simplicial modeling approaches 

to better understand the causes and consequences of 
communication among social animals. 

3.1  Signaling and communication 
3.1.1  Alarm calls  

Vervet monkeys use context-specific signals to warn 

conspecifics of impending danger. These calls not only 
indicate that danger is nearby, but also the type of dan-

ger, e.g. aerial predator vs. ground predator (Cheney and 

Seyfarth, 1992). The response of the entire group de-
pends on the information contained in the warning sig-

nal. Furthermore, learning what signals to produce, and 
when to use them, depends on the type of signals indi-

viduals were exposed to during development (Seyfarth 
and Cheney, 1980; Seyfarth and Cheney, 1986). Simpli-

cial sets can help uncover how such context specific 

signals are learned during the development of an indi-
vidual. Because these alarm calls are broadcast, and not 

necessarily directed at particular individuals, modeling 
who learned which signal from whom using traditional 

network analysis will become cumbersome very quickly. 

Simplicial sets allow modeling the build-up of expe-
rience with a particular signal while taking into account 

simultaneous exposures to a signal at various times and 
considering the presence of different sets of individuals 
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from the larger group at each time point. Note that by 

strict definition, a simplicial set consists of ordered sets 
of simplices, which are themselves ordered sets of inte-

racting vertices. This characteristic of simplicial sets 

allows us to easily designate a temporal ordering or 
even directionality (i.e., of information transfer) to the 

set of interactions. Bidirectional communication is im-
plemented by adding simplices with the desired “oppo-

site” directionality or by ignoring the defined ordering 

(similar to directed vs. undirected networks.) 

3.1.2  Eavesdropping 
Animals can benefit by listening to signals produced 

by other individuals even when they are not the intend-
ed receiver of the signal. For example, observing a fight 
among two competitors can provide valuable informa-
tion for future encounters (Johnstone, 2001) and listen-
ing to predators can inform habitat choices (Emmering 
and Schmidt, 2011). Simplicial sets can depict this type 
of inadvertent information gathering more efficiently 
than traditional network analysis and can model the 
flow of such information among groups and over time.  
3.1.3  Awareness Probing 

Black-tailed prairie dogs Cynomys ludovicianus have 
been shown to actively probe the awareness and anti-
predator vigilance of conspecifics (Hare et al., 2014). 
This probing involves a multi-modal display consisting 
of visual and auditory components causing a cascade of 
such displays through the population. Simplicial set 
models can cleanly implement both the temporal as-
pects of the cascade, as well as the spatial variance be-
tween the effects of the auditory and visual components 
of the display, and the feedback effects on the ratio of 
foragers to sentinels within the population.  
3.2  Collective decision making 

Recruitment to food in social insect colonies pro-
vides another example of communication via multi-way 
interactions among animals. For example, the use of 
pheromone trails provides information on the location 
of a food source to multiple workers simultaneously 
across large spatial and temporal scales (Traniello, 
1989). On a smaller spatial and temporal scale, a honey 
bee forager provides information about the location and 
quality of a food source to multiple foragers simulta-
neously through an elaborate dance signal (Von Frisch, 
1967). In both cases, information spreads via interac-
tions, and collective knowledge of available resources 
emerges. Because the communication strength changes 
over time depending on reinforcement (i.e., how many 
workers lay the pheromone trail), we may want to 
represent communication as a function of the number of 

participants. Therefore, to uncover how knowledge of 
available resources is shared within a colony, we need 
to understand how many workers are engaged in each 
activity and in which spatio-temporal pattern, because 
parallel signals may be produced by multiple groups. 
Simplicial sets allow us to examine how the number and 
placement of informed individuals, or the number of 
individuals influenced by a pheromone at any time, af-
fects the spread of information throughout the colony 
and how the dynamics of this information spread influ-
ence the accumulation of global knowledge.  
3.3  Fission fusion dynamics  

Many social animals live in a fission-fusion society, 
i.e., individuals regularly change who they interact with 
over time (Aureli et al., 2008). For example, wild 
chimpanzee males interact in groups of varying sizes 
and composition to hunt, defend a territory, or guard a 
mate (Muller and Mitani, 2005). Each male may partic-
ipate in several different groups, each with a different 
purpose, however, each male also seeks to assert its 
dominance over as many other males as possible. Thus, 
it is critical to coordinate a group’s collective responses 
in a way that promotes both one’s social dominance and 
its survival. Simplicial sets would allow us to easily 
represent multiple types of sub-group interactions (i.e., 
social grooming vs aggression) and the relationship 
among the various types of interactions. Furthermore, it 
will allow modeling the effect of various types of inte-
ractions on both local and global knowledge and on 
changes to the dominance hierarchy, and related interac-
tions over time. Increased understanding of how the 
available information about dominance status and ex-
isting alliances percolates in this fission-fusion society, 
as well as the inherent bottlenecks that typify existing 
arrangements, could lead to a better evolutionary under-
standing of the social structure of this species.  
3.4  Social learning 

Studies of information sharing among animals often 
focus on who learns what from whom (Heyes and Galef, 
1996). Social learning is most frequently defined as the 
acquisition of a previously undisplayed behavior via 
observation of a conspecific (Heyes, 1994), which has 
been demonstrated in several species (e.g., wild chim-
panzees; Hobaiter et al., 2014). However, it is often 
difficult to control for environmental or genetic factors 
that might influence the acquisition of the observed be-
havior, and controlled experimental methods that exa-
mine dyadic interactions are often employed to deter-
mine whether particular behaviors are socially trans-
mitted (Lonsdorf and Bonnie, 2010; Reader and Biro, 
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2010). More recently, network-based diffusion analysis 
(NBDA) has been used to examine information trans-
mission in a more natural social setting of a group of 
interacting individuals (Franz and Nunn, 2009; Hoppitt 
et al., 2010). NBDA and similar methods offer statistical 
power to predict the existence of social learning in a 
group, given observations of behavioral adoptions over 
time, and can provide the potential pathway of informa-
tion across an interaction network. However, these me-
thods do not address the temporal change in the collec-
tive ability of the group as a whole to solve a task, nor 
do they allow for scenarios in which the dynamic of 
interactions in sub-groups is fundamentally different 
from that of pairwise interactions (see examples in Ta-
ble 2). 

Traditional networks are able to convey the fact that 
a particular agent had an influence of a particular mag-
nitude on another agent, but this model breaks down 
when we wish to consider the combined effects of mul-
tiple signals and the effect of explicit subgroups on the 
dissemination of information (cf. Jeanne, 1996; Karsai 
and Wenzel, 2000; O’Donnell and Bulova, 2007; Rob-
son and Traniello, 1999). We can obtain a better under-
standing of the knowledge capacity of social animal 
groups by using mathematical models that are capable 
of representing more than pairwise interactions. This 
will allow us to more accurately examine the cascades 
of information that occur when multiple animals ob-
serve a group member perform a novel behavior, or 
when information is conveyed by different subsets of 
the group at various times.  

Next, we define and discuss a class of higher-order 
models as a concrete example of how to efficiently 
capture the dynamics of social transmission and know-
ledge capacity in animal groups. 

4  Simplicial Sets in Application 

Both human (Golub and Jackson, 2010; Kearns et al., 
2006) and animal (Conradt and Roper, 2005; Couzin et 
al., 2005; Franks et al., 2002; Huse et al., 2002; Krueger 
et al., 2014) groups are capable of solving cognitively 
difficult problems better than single individuals. Inte-
restingly, collective solutions can be reached efficiently 
when each group member has only limited access to 
information (Conradt and List, 2009; Kearns et al., 2006; 
Krause et al., 2010; Sasaki and Pratt, 2011; Sasaki and 
Pratt, 2012). Furthermore, information may be compiled 
via sub-group interactions to obtain solutions to prob-
lems (Kang and Xiong, 2013). Such information build-   
up can be limited by the communication structure itself, 

i.e. who interacts with whom, as well as by the quantity 
or timing of interactions. Variability in individual capa-
bilities to transmit information may play a role in how 
the social group accumulates and synthesizes know-
ledge (Pinter-Wollman et al., 2011) as will interactions 
between individuals with complementary sets of infor-
mation (Garland et al., 2011). Finally, strategic sharing 
of information can play a large role in improving the 
knowledge capacity of a group (Sen et al., 1996). It is 
not always necessary for individuals to share their entire 
information set in each interaction – rather, creativity 
and innovation may be enhanced by sharing relevant 
results, without revealing all of the understanding that 
contributed to them. To understand how groups solve 
difficult problems that require information sharing we 
require methods that enable us to understand and de-
scribe multi-way interactions among sub-groups which 
traditional network methods cannot. 

When attempting to analyze the build-up of know-
ledge from individual information to collective outcome 
within groups of communicating individuals, it is im-
portant to understand that communication among group 
members acts to coalesce individuals’ information into a 
communal knowledge set that is potentially greater than 
the sum of the individual parts (Scardamalia and Berei-
ter, 2006). We call this collective knowledge set the 
‘knowledge capacity’ of the group, and define the ‘lear-
ning potential’ of the group as the difference in its 
knowledge level between the final and initial distribu-
tions of knowledge. It is important to note our critical 
distinction between knowledge and information: We 
will refer to information when we speak of the singular 
things known by an individual – e.g. individuals A and 
B have information about the location of a food source; 
we refer to knowledge only when we speak of a set of 
information, whether that set is possessed by an indi-
vidual, or built up through a group interaction – e.g., 
individuals A and B have interacted such that they now 
both possess identical knowledge about the location and 
quality of a certain food source. This distinction allows 
us to examine a range of individual capabilities with 
regard to sharing and acquiring information, as well as 
to understand the origins of creativity and innovation. 

Our examination of knowledge capacity and learning 
potential differs from traditional research about infor-
mation dissemination through social networks (Ace-
moglu et al., 2010; Bakshy et al., 2012; Bauch and 
Galvani, 2013; Boccaletti et al., 2006; Kempe et al., 
2003; Singer, 2012), in that it allows the examination of 
the group inference processes. Percolation of informa-
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tion is a dyadic process by which information is shared 
with some probability given an interaction between 
sender and receiver(s). By considering additional me-
chanisms through which the shared information is pro-
cessed by the group, we transition from treating “know-
ledge” as a token that gets passed from teacher to learn-
er to depicting knowledge more realistically as a set of 
building blocks from which new ideas may arise as an 
emergent property. Modeling knowledge capacity with 
simplicial models enables incorporation of functional 
responses based on the size of the interacting groups. 
Thus we can extend the insights provided by studies of 
information dissemination on networks to include the 
mechanisms by which knowledge building and innova-
tion occur in social groups, especially with respect to 
the contribution of interactions among sub-groups.  

An initial approach to examining the knowledge ca-

pacity of a group using simplicial sets begins by repre-

senting each member of the group by a 0-simplex, and 
each interaction between k+1 individuals as a k-simplex 

(generalizing the nodes and edges of a traditional net-
work model). Formally, let the ith individual in the target 

group be represented by a 0-simplex 0
iX   0X . Let 

each k-simplex k k
jX X  be representative of an inte-

raction between the k+1 individuals that comprise k
jX . 

Then, given an initial knowledge value  0
ivb   

for each vertex 0
iv X , the knowledge built within a 

particular simplex k
jX at time t is given by 

   1
,

1 i
k

i j

k
j v

v X

c X t b t
k




   

We may now define a learning process, which is 

simply an updating rule for 
ivb  at each time step, i.e. 

an accumulation of knowledge by all members of the 

simplex at that time step: 

 
With this approach, we have described learning with-

in a particular communication interaction (k-simplex) in 
such a way that participating individuals with less 
knowledge than the group average have acquired new 
information that increases their knowledge to that of the 
group average of the most productive interaction in 
which they have participated. These dynamics are in-
spired by the DeGroot model of social learning (De-
Groot, 2005) and chosen as a natural model for an ini-
tial exploration of knowledge and learning. A crucial 

aspect of future research will be to find appropriate 
functions for each system of interest that accurately 
depict the accumulation of knowledge. For example, 
studies of social learning in animals may benefit from 
functions that capture how innovation and discovery of 
new knowledge emerges from social learning or com-
munication. Further, note that by our definition of indi-
vidual knowledge as a real-valued number, we have 
restricted our sample framework to a serial learning 
dynamic (i.e. an individual possessing a knowledge of 
“3” is understood to have the information needed to 
know “1” and “2”). This assumption may be relaxed in 
future work to enable the modeling of disjoint sets of 
individual information. Still, our current definition pro-
vides a simplified starting scenario for investigating the 
impact of higher-order topological structures on infor-
mation sharing and knowledge building in social 
groups. 

We now give a basic example of how such a frame-
work could be utilized in application by providing the 
following scenario: Consider a group of 10 New Cale-
donian crows, a species that is known for its social 
learning and information transmission skills (Holzhaid-
er et al., 2010; Kenward et al., 2006). Each group 
member is categorized according to family relations: {v0} 
parent, {v1, v2, v3} offspring, and {v4, …, v9} 
non-relatives. Suppose that information regarding tool 
design and use is shared first through pairwise meetings 
between parent and each individual offspring, as well as 
pairwise interactions between each pair of offspring. 
Subsequently, each offspring has a group interaction 
with a unique set of non-relatives, after which the off-
spring “report back” for a (simultaneous) group interac-
tion with the parent. This scenario is encapsulated by 
the simplicial set geometrically represented in Fig. 5. 
Let each individual be represented by a vertex in X0 = 
{v0,…, v9}. Then let each sharing interaction be given as 

            1
0 1 0 2 0 3 1 2 1 3 2 3, , , , , , , , , , ,X v v v v v v v v v v v v

 

      2
1 4 5 2 6 7 3 8 9, , , , , , , ,X v v v v v v v v v  

  3
0 1 2 3, , ,X v v v v  

To understand how the knowledge flows within this 
example scenario, we assign each individual a value 
representing the level of information they possess as 
shown in Table 1 (t = 0). Initial values of information, 
such as the ability to produce and use a particular tool, 
were given arbitrarily such that offspring begin with the 
smallest amount of information. We then assume that 
this information is shared within each interaction ac-



120 Current Zoology Vol. 61  No. 1 

 

cording to equations 1 and 2. The sharing interactions 
detailed above can be captured by imposing a feed-  
forward ordering, such that time t: 1 → 3. At each time 
step t, sharing interactions occur simultaneously within 
all k-simplices where k = t; i.e. at t = 3, we process the 
interaction on the simplex in X3. This was done not only 
as a simplifying assumption for this introductory exam-
ple but as a way of placing a finite upper bound on the 
number of interactions in X; more realistic communica-
tion protocols can be adopted according to the purpose 
of the model and empirical observations of the study 
system. 
 

Table 1  Knowledge values at each time step t 

 t = 0 t = 1 t = 2 t = 3 

v0 10 10 10 16.5 

v1 8 9 18 18 

v2 8 9 18.67 18.67 

v3 8 9 19.33 19.33 

v4 21 21 21 21 

v5 24 24 24 24 

v6 22 22 22 22 

v7 25 25 25 25 

v8 23 23 23 23 

v9 26 26 26 26 

We give arbitrary initial knowledge values  0vi
b for each vertex in 

the example of New Caledonian crows described in the text. Values at 
subsequent time steps are calculated using the learning equations 1 
and 2. 

 
By applying the learning equations 1 and 2 to the 

described communication structure, we can obtain final 
knowledge values for each vertex as shown in Table 1. 
If we consider the knowledge capacity as the average of 
the information possessed by each individual, then we 
obtain a final knowledge capacity Bfinal of 21.35, with a 

learning potential B of 3.85. While we realize the tri-
viality of characterizing the “state of all things known” 
in this way, we have supplied this definition of B for 
illustrative purposes only while making the case that 
more applicable functions can be defined according to 
the system of interest. Within this simple scenario, the 
influx of knowledge back to the parent may be of great-
er interest when studying social learning of behaviors, 

therefore 
0vb would be a more informative number 

than Bfinal. 
While the example described above could have also 

been implemented using a hypergraph model (for defi-
nition and example, see Fig. 4), it is important to note  

 
 

Fig. 4  An example hypergraph 
A hypergraph connects vertices together using multi-edges, which 
enable us to connect more than two vertices together at a time. As 
shown, edges e1 and e2 constitute pairwise interactions. Edges e3 and 
e4 show interactions between 3 vertices. Note that within this frame-
work, we could denote multiple distinct interactions between the same 
sets of vertices, although this is not depicted here. However, a prob-
lem arises when we ask a question such as “Is edge e1 a sub-edge of e3 

or of e4?” Because there is no notion of “sub-edge” within the defini-
tion of a hypergraph, this question cannot be accurately answered.  

 

 
 

Fig. 5  Simplicial set representation of the new Caledo-
nian crows example 
A simplicial set depicting three sets of learning events among new 
Caledonian crows. In the first set, the parent (v0, in red) exhibits a 
learned task in front of its offspring (v1, v2, v3, in blue) as they interact 
with each other. These interactions are shown by black edges. In the 
second set of conversations, the offspring exhibit the learned behavior 
to unrelated individuals (in green) in groups of 3, shown by the green 
triangles. In the final set of interactions, the offspring return to the 
parent and interact as a group of 4, shown by the blue tetrahedron. See 
example calculations given in Table 1. 

 
that the use of the learning equations we described 
above on simplicial architectures provide us with a 
flexible framework. For example, using our framework 
we can ask questions that cannot be answered using a 
hypergraph model without imposing significant addi-
tional assumptions and mathematical structure, such as:  

How does the ordering of interactions influence the 
group’s learning potential? (e.g., is the learning poten-
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tial greater if we reverse the ordering of the interactions 
–t: 3 → 1 instead of t: 1 → 3) 

How does subgroup structure influence information 
flow? (e.g., what would happen to the learning potential 
if the offspring were to have a group sharing interaction 
before “reporting back” to the parent?) 

How does the duration of, or number of participants 
in, interactions influence the speed vs. accuracy tradeoff 
that characterizes many collective decision making 
processes (McClurg, 2003)? (e.g., does the learning 
potential increase as duration or number of interactions 
increase, or is there an optimal number of interactions 
above which a collective decision no longer improves?) 

Finally, we have provided (for comparative purposes) 
a more traditional network depiction of the example 
scenario (Fig. 6A), where an edge exists between any 
two vertices if the corresponding individuals interacted 
in any way, at any time. Note the fundamental differ-
ence in interpretation that occurs by attempting to mod-
el this scenario with a network, namely that we can ob-
serve which pairs of individuals have interacted to share 
information, but have no knowledge of whether any of 
these pairs were simultaneous interactions, or in which 
order the interactions might have occurred. Further, the 
limitation to only dyadic interactions captures different 
information about the system even if we were to take 
the extra step of invoking a time-ordering approach 
(Blonder and Dornhaus, 2011, Blonder et al., 2012, 
Pinter-Wollman et al., 2014) to the communications by 
invoking sub-graphs of G, over which communications 

can occur at time t (Figs. 6B‒D). Therefore, any net-
work based method that we were to employ for calcula-
tions would overlook the functional effect of group size 
on learning that is critical to this example. This point 
serves to illustrate the importance of matching model 
framework to question and system. 

5  Conclusions: Insights Gained 
through Higher-Order Analysis 

Simplicial models have particular applicability to cap-
turing scenarios in which it is important not only that 
individuals have interacted, but also in what manner 
they have done so; this opens up a litany of new ave-
nues of exploration into efficient structures for communi-
cation. In this paper, we have given a variety of exam-
ples and applications to demonstrate the value of sim-
plicial sets as a generalization of traditional network ana-
lysis. Furthermore, our framework allows investigating 
a broad spectrum of additional problem types that can-
not be captured by networks such as increases in know-
ledge capacity and learning potential in social groups. 

At this juncture, note that we do not propose simpli-
cial models as a generic replacement for traditional 
network models, but rather assert their usefulness for 
questions that require the encapsulation of dynamics 
having higher dimensionality than simple pairwise inte-
ractions. We propose that these representations would 
be used to complement existing network techniques to 
better describe socially mediated transmission of infor-
mation, thus enabling the field to ask deeper questions 

 

 
 

Fig. 6  Network representation of the new Caledonian crows example 
A network representation of the set of interactions depicted in Figure 5. A) pairs of vertices are linked by an edge if they have participated together 
in any interaction. Note that this network shows accurately if two individuals have interacted, but falls short of representing the size of the conversa-
tion. B-D) the network in A broken into sub-graphs representing the interactions at each time t. The time-ordered approach may allow us to 
represent the conversation size, but does not faithfully represent the functional learning or sub-group participation dynamics described in the text. 
Further, it is easy to see that the sub-graph approach quickly becomes unwieldy as the set of vertices and interactions becomes large. 
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Table 2  Examples of Higher-Order Questions 

Question Applications 
  

Two or more simultaneous flows; need to know which subset of 
individuals is associated with which flow, at what time, and to what 
effect 

Simultaneous computer processes; campaigning strategies in political 
elections; nest-site selection in social insects; communication; compara-
tive mate choice, parental behavior 

  

Each subset of “receivers” of information is a separate entity and is 
associated with a (possibly) different cost 

Optimal routing in multi-hop wireless networks; team formation; divi-
sion of labor 

  

The size of the interacting groups presents a critical difference in the 
interpretation of the interaction  

Academic collaborations; team formation; semantic document cluster-
ing; optimal education strategies; comparative studies; group size effects

  

Interactions in explicit sub-groups have emergent properties which 
cascade temporally as well as across groups. 

Origin of innovation via knowledge building in social groups; fo-
mite-based disease transmission where infectious dose per individual is 
reduced by distribution as group size increases; vigilance networks 

A sample of the types of questions for which higher-order modeling frameworks are useful and necessary, as well as broad applications for each 
question category. 

 
about how communication structures mediate know-
ledge sharing and enable effective group decision mak-
ing. A few such questions and applications are given in 
Table 2. 

Simplicial sets provide a powerful set of analytical 
tools that move beyond their ability to generalize tradi-
tional network and hypergraph models, adding new 
ways to examine social processes. Thus, it is not sur-
prising that simplicial models are applicable to a wide 
array of topics in both social and biological fields. For 
example, the problem of efficiently distributing infor-
mation such that a country can choose a national politi-
cal leader is fundamentally related to social insects dis-
seminating information so that they can choose a new 
nest site. Strategies used for categorizing a set of search 
engine results (Do, 2012; Lin and Chiang, 2005) could 
be used to discover structure in the language of prairie 
dogs. Recent publications have used the ability of sim-
plicial architectures to describe complex topologies to 
locate coverage holes in wireless networks (Ren et al., 
2011), detect structured communities in large networks 
(Gopalan and Blei, 2013), and extract patterns from 
clouds of data points in n-dimensions (Chan et al., 2013;  
Nanda and Sazdanović, 2014). In addition to the uses 
illustrated here, we can see applications of this modeling 
class to biological topics such as protein interaction 
networks and quorum sensing in bacteria, as well as 
more human-centric topics such as optimal educational 
strategies and opinion propagation. By adopting and 
adapting these mathematical tools for use in biological 
systems, we hope to provide a foundation for multidis-
ciplinary collaboration, identifying analogous problems 
across different domains, and providing an analytical 
framework for a unified exploration into these topics. 
The potential opportunities for comparing the efficiency 
of communication systems in social groups by analyz-
ing knowledge capacity and learning potential with a 

simplicial model are as varied as the communication 
systems they can represent.  
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Appendix 1: Mathematical Definitions 

Formally, let a simplicial set X = {X0, …, Xn} be a collection of simplices with maximum simplex dimension n, 
where Xk is the set of all simplices of dimension k, also referred to as the k-simplices of X. Then for each k > 0, let us 
define the following functions for each 0 ≤ i ≤ k,  

 di: Xk→Xk1; the face maps that take us from a particular k-simplex to the face of that k-simplex which does not 
contain its i-th vertex. 

 si: Xk→X k +1; the degeneracy maps that take us from a particular k-simplex to the degenerate1 (k+1)-simplex 
which has the i-th element of the k-simplex repeated exactly twice. 

These functions must obey the following identities (where   denotes functional composition): 

 1 , ifi j j id d d d i j    

 1 i  , fi j j id s s d i j    

 1 ident, ityj j j jd s d s   

 1  1, ifi j j id s s d i j     

 1 i  , fi j j is s s s i j    

To make the above definition a bit easier to visualize, consider the example in Fig. 3 in which a (semi)-simplicial 

set  0 1 2, ,X X X X  is shown. Note that X is semi-simplicial because it does not feature any degenerate simplices, 

a choice made for ease of depiction. Then  0
1 2 3 4, , ,X v v v v  represents the 0-simplices, or vertices, of the simpli-

cial set. Similarly,           1
1 2 1 3 1 4 2 4 3 4, , , , , , , , ,X v v v v v v v v v v  represents the set of 1-simplices, or edges, and 

  2
1 3 4, ,X v v v  represents the lone 2-simplex, shown as a filled triangle. The face maps di point us to the face of a 

particular simplex that does not contain the i-th vertex of that simplex: 

 1-faces of the 2-simplex:  

o     0 1 3 4 3 4, , ,d v v v v v   

o     1 1 3 4 1 4, , ,d v v v v v   

o     2 1 3 4 1 3, , ,d v v v v v  

 0-faces of the 1-simplices: 

o      0 1 4 0 2 4 0 3 4 4, , ,d v v d v v d v v v    

o      1 1 2 1 1 3 1 1 4 1, , ,d v v d v v d v v v    

o    0 1 3 1 3 4 3, ,d v v d v v v   

o    0 1 2 1 2 4 2, ,d v v d v v v   

Finally, it is easy to check that our example constitutes a valid simplicial set by checking for set X2 that the equality 

   1i j j id d d d   holds for the (i, j) combinations of (0,1), (0,2), and (1,2). Clearly, the combination of the sets of 

simplices together with the face maps is enough information for us to completely reconstruct the (semi)-simplicial set 
depicted in Fig. 3. If we had featured degenerate simplices in our example, the addition of the degeneracy maps would 
constitute the required information for reconstruction. Note that it is possible for a simplicial set to have 
non-degenerate simplices with degenerate faces and vice versa. 

It is important to make our terminology explicit with respect to simplicial architectures, as there is some variation in 
the literature in this regard. We have given the definition of a simplicial set above, consistent with (Friedman, 2008). If 

 
1 A degenerate simplex is a simplex that has at least 1 repeated vertex and thus has a geometric realization of lesser dimensionality 
than its abstract representation. For example, in Fig. 3, if vertex v1 and edge (v1, v2) existed twice, this would exemplify a 4-simplex 
that can be geometrically represented as a 3-simplex because the repeated vertex and edge exist in the same space. 
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we restrict the definition given of a simplicial set to disallow degenerate simplices, we have a semi-simplicial set. If 
we additionally restrict this definition such that each simplex in X is completely and uniquely identified by its set of 
vertices, we arrive at a simplicial complex. Rigorous definitions for simplicial complexes can be found in (Atkin, 1974; 
Friedman, 2008; Munkres, 1984; Spanier, 1994), while further definitions for semi-simplicial sets and simplicial sets 
can be found in (Spivak, 2009), where they are defined both in terms of their combinatorial definition as well as their 
category theoretic definitions. 

We now address some terms and definitions that are important when using simplicial sets to capture group pheno-
mena, followed by some sample applications. A k-simplex is a k-dimensional triangle constructed as the convex poly-
hedral hull (Berg et al., 2000) of k+1 vertices. For example, a 0-simplex is a vertex, a 1-simplex is an edge, a 
2-simplex is a (filled) triangle, a 3-simplex is a (filled) tetrahedron, and so on. A face of a simplex is the polyhedral 
hull of a subset of the vertices in the simplex. Then, given these definitions, a simplicial set is the union of many such 
simplices, having the simplices “glued” together along shared faces. An n-dimensional simplicial set is a simplicial set 
such that n is the maximum size of all simplices in the set. If a particular simplex is not a proper subset of another 
simplex in a simplicial set X, than that simplex is referred to as a facet of X. The k-skeleton of a simplicial set X is the 
subset of X containing all simplices of at most dimension k.  

Several familiar concepts from standard graph theory, and of frequent use in application to social network theory, 
sociology, and biology have been generalized to simplicial sets. We give the following generalizations of the familiar 
concepts of degree and adjacency, as detailed in (Muhammad and Egerstedt, 2006). The upper degree of a k-simplex 

k
iX X  is the number of (k+1)-simplices in X of which k

iX  is a face. Similarly, the lower degree of a k-simplex 

kX Xi   is equal to the number of faces in k
iX . Two k-simplices ,k k

i jX X X  are upper adjacent if both k
iX  and 

k
jX  are faces of a common (k+1)-simplex in X. Likewise, two k-simplices ,k k

i jX X X  are lower adjacent if both 

k
iX  and k

jX  share a common face. Degree centrality, closeness centrality, and betweenness centrality (Freeman, 

1979) have definitions generalized to simplicial complexes in (Jiang B and Omer I, 2007). Extending other structural 
characterizations (such as measures of clustering, c.f. (Bansal S, Khandelwal S and Meyers LA, 2009)) for use with 
simplicial topologies remain open areas of research. 

It is easy to see an applied interpretation for measures such as these in various example scenarios. For example, 
suppose we wish to analyze the informational relationship among a group of research papers. We could construct a 
simplicial set in which each separate paper is represented by a vertex with a simplex existing only if all research pa-
pers that exist in that simplex share a topical keyword. In such a model, upper adjacency of two simplices (as defined 
above) could indicate that two topical keywords are (strictly) sub-topics of a broader, more encompassing keyword 
(e.g., “graph theory” and “algebraic topology” as sub-topics of “mathematics”). Similarly lower adjacency of two 
simplices could show that particular set of papers as having a mutual “inter-disciplinary” focus, since they share a 
subset of topical keywords that do not necessarily share the same broader topic. Note that two simplices may be both 
upper adjacent and lower adjacent to each other. 

For another example, imagine a simplicial model of a scientific collaboration database in which each author is 
represented by a vertex, with each k-simplex of vertices (collection of (k+1) authors) representing a joint publication. 
We may wish to analyze the relative importance of each author or collaborative effort to the field. In this case we 
could use the extensions of centrality measures as given in (Jiang and Omer, 2007) to compute the degree, closeness, 
or betweenness of each author or collaborative group. Examination of the topological holes and the minimal non-faces 
(cf. (Moore et al., 2012)) of the simplicial set give us two separate ways to identify missed collaborations in the group. 
Note as well that the 1-skeleton of such a simplicial set would represent the underlying traditional collaboration net-
work notating simply which pairs of individuals had co-authored with each other. 

The use of simplicial sets to model group processes can also, in some cases, allow for identification of new struc-
tural features within a group such as topological holes. Topological holes are breaks in the connectivity of the topo-
logical space (i.e. the donut hole in the center of a torus); with respect to communicative interactions, they may denote 
possible bottlenecks to information dissemination. Because simplicial sets can be analyzed algebraically (May, 1992), 
categorically (Grandis, 2002; Spivak, 2009), and combinatorially (Goerss and Jardine, 2009; Kozlov, 2008), they pro-
vide a versatile toolkit by which to examine new and mathematically interesting problems. 

 
  

 


