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Abstract
1.	 The	 traits	 of	 the	 index	 case	 of	 an	 infectious	 disease	 outbreak,	 and	 the	 circum-
stances	for	their	aetiology,	potentially	influence	the	trajectory	of	transmission	dy-
namics.	However,	these	dynamics	likely	also	depend	on	the	traits	of	the	individuals	
with	whom	the	index	case	interacts.

2.	 We	used	the	social	spider	Stegodyphus dumicola	to	test	how	the	traits	of	the	index	
case,	group	phenotypic	composition	and	group	size	interact	to	facilitate	the	trans-
mission	of	a	GFP-labelled	cuticular	bacterium.	We	also	compared	bacterial	trans-
mission	across	experimentally	generated	“daisy-chain”	vs.	“star”	networks	of	social	
interactions.	Finally,	we	compared	social	network	structure	across	groups	of	differ-
ent	sizes.

3.	 Groups	of	10	spiders	experienced	more	bacterial	transmission	events	compared	to	
groups	of	30	spiders,	regardless	of	groups’	behavioural	composition.	Groups	con-
taining	only	one	bold	spider	experienced	the	lowest	levels	of	bacterial	transmission	
regardless	of	group	size.	We	found	no	evidence	for	the	traits	of	the	index	case	in-
fluencing	any	transmission	dynamics.	In	a	second	experiment,	bacteria	were	trans-
mitted	 to	 more	 individuals	 in	 experimentally	 induced	 star	 networks	 than	 in	
daisy-chains,	on	which	transmission	never	exceeded	three	steps.	 In	both	experi-
mental	network	types,	transmission	success	depended	jointly	on	the	behavioural	
traits	of	 the	 interacting	 individuals;	however,	 the	behavioural	 traits	of	 the	 index	
case	were	only	important	for	transmission	on	star	networks.

4.	 Larger	social	groups	exhibited	lower	interaction	density	(i.e.	had	a	low	ratio	of	ob-
served	to	possible	connections)	and	were	more	modular,	i.e.	they	had	more	connec-
tions	between	nodes	within	a	subgroup	and	fewer	connections	across	subgroups.	
Thus,	larger	groups	may	restrict	transmission	by	forming	fewer	interactions	and	by	
isolating	subgroups	that	interacted	with	the	index	case.

5.	 These	findings	suggest	that	accounting	for	the	traits	of	single	exposed	hosts	has	
less	power	in	predicting	transmission	dynamics	compared	to	the	larger	scale	factors	
of	the	social	groups	in	which	they	reside.	Factors	like	group	size	and	phenotypic	
composition	appear	to	alter	social	interaction	patterns,	which	leads	to	differential	
transmission	of	microbes.
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1  | INTRODUCTION

Hosts’	traits	are	important	determinants	of	individuals’	propensity	to	
acquire	and	transmit	microbes	which	may	be	infectious	agents	of	dis-
ease	 (Martin,	Burgan,	Adelman,	&	Gervasi,	 2016;	 Salje	 et	al.,	 2016).	
Thus,	differences	among	individuals	in	traits	like	immunocompetence	
(Gopinath,	Lichtman,	Bouley,	Elias,	&	Monack,	2014)	and	behavioural	
tendencies	(Barron,	Gervasi,	Pruitt,	&	Martin,	2015)	can	have	implica-
tions	 for	 the	nature	and	magnitude	of	host–microbe	 interactions.	 In	
the	most	extreme	cases,	certain	 individuals	can	be	the	tipping	point	
upon	 which	 epidemics	 arise	 or	 halt	 (Lloyd-	Smith,	 Schreiber,	 Kopp,	
&	Getz,	 2005).	 However,	 the	 influence	 of	 a	 single	 individual	 on	 its	
social	 group	or	 population	will	 be,	 at	 least	 in	 part,	mediated	by	 the	
traits	of	nearby	 individuals	with	whom	the	focal	 individual	 interacts.	
Unfortunately,	 reliably	 detecting	 and	 tracking	 transmission	 among	
individuals	 is	 one	 of	 the	most	 difficult	 problems	 in	 disease	 ecology	
(Buhnerkempe	 et	al.,	 2015;	 Fenton,	 Fairbairn,	 Norman,	 &	 Hudson,	
2002;	Haydon	et	al.,	2003;	Read,	Edmunds,	Riley,	Lessler,	&	Cummings,	
2012).	Furthermore,	the	traits	of	pairs	or	groups	of	interacting	individ-
uals	are	rarely	studied	empirically	or	in	unison.	Thus,	a	more	complete	
understanding	of	how	 individual	 traits	unite	with	group	traits	 to	ex-
plain	epidemiological	dynamics	will	require	(i)	a	priori	characterization	
of	 important	 host	 traits;	 (ii)	 analyses	 of	 social	 interaction	 networks;	
and	(iii)	information	regarding	how	microbes	are	transmitted	through	
different	structures	of	social	networks.

Many	emerging	 infectious	disease	outbreaks	begin	with	a	 single	
individual	 contracting	 an	 infection,	 although	 inferring	 the	 origin	 of	
an	epidemic	 (i.e.	 the	 “index	case”	or	 “patient	 zero”)	does	not	estab-
lish	their	aetiology	 (Lokhov,	Mézard,	Ohta,	&	Zdeborová,	2014).	 It	 is	
tempting	 to	expect	 that	 the	 traits	of	 the	 index	case	will	predict	 the	
likelihood	and	magnitude	of	the	ensuing	outbreak,	and	some	empir-
ical	evidence	supports	 this	expectation	 (Adelman,	Moyers,	Farine,	&	
Hawley,	2015).	However,	this	is	not	always	the	case	(Keiser,	Howell,	
Pinter-	Wollman,	&	Pruitt,	2016),	and	we	propose	that	the	effects	of	
the	 traits	 of	 the	 index	 case	will	 depend	 on	 factors	 of	 the	 group	 in	
which	they	reside	(e.g.	group	size)	and	the	traits	of	the	individuals	with	
whom	 it	 interacts.	 For	 instance,	 the	 spread	 of	 infectious	 pathogens	
may	be	halted	if	the	index	case	resides	in	a	small	social	group,	or	in-
teracts	with	a	large	number	of	individuals	of	low	infection	competence	
(Barron	et	al.,	2015).	 In	 the	2002–2004	SARS	outbreak,	 simulations	
showed	that	two	identical	communities	can	experience	vastly	differ-
ent	outbreaks	 if	 the	 index	cases	differed	 in	 their	social	contact	pat-
terns	(Meyers,	Pourbohloul,	Newman,	Skowronski,	&	Brunham,	2005).	
Even	after	a	successful	transmission	event	from	the	index	case	to	the	
primary	cases	of	infection,	the	propensity	to	transmit	infectious	agents	
to	secondary	cases	will	depend	on	the	traits	of	the	interacting	individ-
uals.	Thus,	studying	individuals’	traits	in	isolation	is	likely	a	less	pow-
erful	 predictor	of	disease	dynamics	 relative	 to	more	 comprehensive	

analyses	of	group	traits.	We	therefore	reason	that	the	degree	to	which	
infectious	microbes	travel	through	a	social	network	will	depend	on	the	
series	of	host	individuals	through	which	the	microbe	is	transmitted.

There	 are	 several	 non-	mutually	 exclusive	 paths	 through	 which	
microbes	may	be	transmitted	from	a	single	exposed	 individual	to	 its	
social	partners	(Pinter-	Wollman,	Keiser,	Wollman,	&	Pruitt,	2016).	For	
example,	 the	microbe	 could	 follow	 a	 daisy-	chain	 or	 diffusion	 chain	
pattern	(i.e.	a	“line	network”),	where	the	index	case	transmits	to	a	sec-
ondary	individual,	who	then	transmits	to	a	third	individual,	and	so	on.	
However,	models	have	suggested	that	transmission	along	daisy-	chains	
may	be	 altered	by	 the	 traits	 of	 its	members	 (Moussaïd,	Brighton,	&	
Gaissmaier,	 2015;	 Moussaïd	 &	 Yahosseini,	 2016).	 Alternatively,	 the	
index	case	alone	may	transmit	to	multiple	individuals	simultaneously	
or	in	succession	(i.e.	via	a	“star	or	“radial”	network;	Perkins,	Cagnacci,	
Stradiotto,	 Arnoldi,	 &	 Hudson,	 2009).	 These	 two	 opposing	 trans-
mission	 patterns	 are	 rarely	 differentiated	 experimentally,	 although	
evidence	 for	each	exists	distinctly.	For	example,	 the	 transmission	of	
entomopathogenic	 fungal	 spores	 through	 interaction	 chains	 of	 cab-
bage	maggot	flies	and	tephritid	fruit	flies	has	been	shown	to	extend	
to	at	least	six	and	three	hosts	respectively	(Dimbi,	Maniania,	&	Ekesi,	
2013;	 Meadow,	 Vandenberg,	 &	 Shelton,	 2000).	 Alternatively,	 the	
superspreader	 concept	 in	 epidemiology	 represents	 an	 extreme	 case	
of	 the	star	network	structure,	where	a	single	 individual	of	very	high	
transmission	competence	can	spread	pathogens	to	a	large	number	of	
susceptible	individuals	(Lloyd-	Smith	et	al.,	2005;	Paull	et	al.,	2012).

Here,	we	use	the	social	spider	Stegodyphus dumicola	as	a	model	to	
evaluate	how	individual	traits,	group	phenotypic	composition	and	social	
network	structure	influence	the	degree	of	group-	wide	transmission	of	
a	GFP-	labelled	cuticular	bacterium	(Pantoea	sp.).	Individual	Stegodyphus 
vary	in	a	diagnostic	behavioural	trait,	“boldness,”	that	is	consistent	across	
long	periods	and	is	associated	with	individuals’	propensity	to	participate	
in	several	collective	behaviours	(Beleyur,	Bellur,	&	Somanathan,	2015;	
Grinsted,	 Pruitt,	 Settepani,	 &	 Bilde,	 2013;	 Keiser,	 Jones,	Modlmeier,	
&	Pruitt,	2014;	Wright,	Keiser,	&	Pruitt,	2015).	Previous	experiments	
demonstrate	 that	 transmission	of	cuticular	bacteria	between	pairs	of	
individuals	 is	biased	and	directional:	more	likely	to	occur	from	bolder	
to	shyer	spiders	(Keiser,	Pinter-	Wollman,	et	al.,	2016),	and	the	degree	
of	 group-	wide	 transmission	depends	on	 the	phenotypic	 composition	
of	the	unexposed	individuals	in	a	colony	(Keiser,	Howell,	et	al.,	2016).	
Thus,	boldness	is	a	measure	of	individuals’	behavioural	tendencies	that	
influence	their	interaction	patterns	within	colonies	and	likely	the	trans-
mission	of	 cuticular	microbes	 (Pinter-	Wollman	et	al.,	 2016).	Here	we	
ask	(i)	whether	the	traits	of	the	index	case	influence	bacterial	transmis-
sion	across	groups	of	different	sizes	and	phenotypic	compositions;	(ii)	
to	what	degree	transmission	dynamics	are	a	product	of	different	social	
interaction	patterns,	specifically	“daisy-	chains”	vs.	“star	networks”;	and	
(iii)	whether	network	attributes	that	may	be	important	for	transmission	
vary	across	groups	of	different	sizes.

K E Y W O R D S
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2  | MATERIALS AND METHODS

2.1 | Animal collection and maintenance

Stegodyphus dumicola	is	a	group-	living	spider	from	arid	southwestern	
African	that	lives	in	female-	biased	colonies	of	two	to	several	hundred	
age-	structured	individuals.	Adult	females	in	these	societies	cooperate	
in	several	group	behaviours	like	alloparental	care,	collective	foraging	
and	web-	building	(Avilés,	Varas,	&	Dyreson,	1999;	Bilde	et	al.,	2007;	
Henschel,	 1998;	 Henschel,	 Lubin,	 &	 Schneider,	 1995;	 Keiser	 et	al.,	
2014).	 For	 the	 bacterial	 transmission	 experiments,	we	 collected	 19	
S. dumicola	colonies	from	Acacia	trees	in	the	Northern	Cape	of	South	
Africa	in	March	2015,	transported	them	to	the	laboratory,	and	main-
tained	colonies	on	an	ad	 libitum	diet	of	domestic	crickets	 in	500-	ml	
plastic	containers.	For	the	social	network	observations,	colonies	were	
collected	from	the	field	in	May	2016.	We	isolated	adult	females,	meas-
ured	their	prosoma	width	and	body	mass,	and	housed	them	in	30-	ml	
plastic	cups	during	 individual	behavioural	assays.	We	estimated	spi-
ders’	body	condition	(a	measure	of	health	or	nutritional	status)	by	the	
residuals	of	a	linear	regression	of	individuals’	body	mass	on	body	size	
(prosoma	width)	(Jakob,	Marshall,	&	Uetz,	1996).	Thus,	greater	values	
of	body	condition	indicate	that	individuals	weigh	more	than	expected	
based	on	their	body	size,	an	indication	of	positive	health	status.

2.2 | Boldness assays

We	 characterized	 individuals’	 boldness	 (a	 behavioural	 traits	 associ-
ated	with	individuals’	propensity	to	engage	in	risky	behaviour;	Sloan	
Wilson,	Clark,	Coleman,	&	Dearstyne,	1994)	by	placing	each	spider	in	
a	clear	plastic	arena	 (diameter	=	12	cm),	 allowing	a	30-	s	acclimation	
period,	and	administering	two	rapid	puffs	of	air	atop	the	spider	using	
an	 infant	 nose-	cleaning	 bulb.	 Spiders	 responded	 by	 halting	 move-
ment	and	huddling	their	legs	close	to	their	body.	We	then	measured	
their	 latency	 to	 resume	activity	after	 this	aversive	stimulus,	and	we	
designated	bold	individuals	as	those	that	resumed	movement	within	
1–200	s	and	shy	individuals	required	≥600	s	to	resume	activity	(similar	
to	Keiser	&	Pruitt,	2014).

2.3 | Bacterial exposure, transmission and sampling

We	 exposed	 spiders	 to	 Pantoea	+	pGLO	 by	 submerging	 them	 indi-
vidually	in	1	ml	of	a	liquid	bacterial	solution	(c. 109	CFU/ml	in	phos-
phate	buffered	saline)	for	3	s	and	allowing	it	to	dry	for	24	hr	before	
transferring	 the	 spider	 to	 a	 colony	 (see	 below).	 Topical	 application	
of	 GFP-	labelled	 Pantoea	 does	 not	 appear	 to	 be	 harmful	 nor	 alter	
spiders’	boldness	(Keiser,	Shearer,	et	al.,	2016),	thus	these	transmis-
sion	patterns	may	be	thought	of	as	a	“null	model”	for	transmission	in	
the	 absence	 of	 infection,	 sickness	 behaviours	 and	mortality,	 similar	
to	studying	prey	behaviour	in	the	absence	of	predation	(e.g.	Bastille-	
Rousseau	et	al.,	2016).	To	differentiate	the	index	case	from	other	spi-
ders,	we	tagged	the	experimentally	exposed	individuals	with	a	small	
green	paint	dot	atop	their	dorsal	abdomen.	All	susceptible	individuals	
were	marked	with	a	blue	dot.	After	allowing	the	spiders	to	interact	for	

24	hr,	we	sampled	the	susceptible	spiders’	cuticles	for	the	presence	of	
Pantoea	+	pGLO	by	vortexing	each	spider	separately	in	1	ml	of	ster-
ile	selective	growth	media	(LB	broth	with	100	μg/ml	ampicillin,	20%	
arabinose;	 Data	S1)	 for	 10	s,	 removing	 and	 euthanizing	 the	 spider,	
and	incubating	the	solution	for	20	hr	at	30°C.	Then,	we	checked	each	
solution	for	green	fluorescence	under	long-	wave	UV	light.	Here,	we	
measured	transmission	solely	in	the	context	of	a	“susceptible-	infected	
model”-	type	epidemiological	framework,	where	we	consider	the	tran-
sition	of	hosts	from	unexposed	to	exposed	and	disregarded	intensity	
(i.e.	bacterial	load)	(Hethcote,	1976).

2.4 | Bacterial transmission within colonies

To	examine	bacterial	 transmission	dynamics,	we	constructed	93	ex-
perimental	groups	of	10	spiders	or	30	spiders	each	containing	either	all	
shy	spiders	(n	=	23	for	groups	of	10,	n	=	6	for	groups	of	30),	one	bold	
spider	(n	=	26	for	groups	of	10,	n	=	5	for	groups	of	30)	or	three	bold	
spiders	(n	=	24	for	groups	of	10,	n	=	9	for	groups	of	30)	with	the	re-
maining	spiders	in	the	colony	being	shy.	These	group	sizes	and	colony	
compositions	are	within	natural	distributions	(Keiser	&	Pruitt,	2014).	
Colonies	were	housed	 in	500-	ml	plastic	containers	with	a	wire	sub-
strate	for	web-	building	for	48	hr	before	adding	a	randomly	selected	
index	case	exposed	 to	Pantoea	+	pGLO	as	described	above	 (latency	
to	resume	movement	for	index	cases	ranged	from	1	s	to	600	s).	After	
interacting	with	the	index	case	for	24	hr,	we	sampled	each	susceptible	
spider	 in	 the	colony	 for	 the	presence	of	 fluorescing	bacteria	as	de-
scribed	above.	A	previous	study	in	this	system	showed	that	exposure	
to	bacteria	via	these	methods	can	increase	cuticular	bacterial	load	by	
multiple	 orders	 of	magnitude	 and	 remain	 elevated	 for	 several	 days	
(Keiser,	Wright,	&	Pruitt,	2016).	The	degree	of	bacterial	transmission	
in	each	colony	was	quantified	as	the	number	of	individuals	on	which	
we	identified	the	transformed	bacteria,	excluding	the	index	case.

2.5 | Transmission via daisy- chains or star networks

We	exposed	individuals	to	Pantoea	+	pGLO,	and	then	24	hr	later,	they	
were	split	 into	two	experiments	for	“daisy-	chain”	or	“star	networks”	
social	 interactions.	 For	 the	 daisy-	chain	 interactions	 (n	=	39),	 index	
cases	of	known	boldness	and	body	condition	were	isolated	for	24	hr	
in	their	own	housing	container,	and	then	moved	into	the	housing	con-
tainer	of	a	primary	individual.	After	24	hr,	the	primary	individual	was	
moved	 to	 the	 housing	 container	 of	 a	 secondary	 individual,	 and	 the	
index	 case	was	 checked	 for	 the	 presence	 of	 Pantoea.	 Twenty-	four	
hours	 later,	 the	 secondary	 individual	was	moved	 into	 the	 container	
of	 a	 tertiary	 individual,	 and	 the	 primary	 individual	was	 checked	 for	
Pantoea.	 This	 process	was	 continued	 until	 the	 tenth	 individual	was	
reached	(e.g.	Figure	3a).

For	the	star	networks	(n	=	20),	an	index	case	was	moved	into	the	
housing	container	of	a	primary	individual	for	24	hr,	and	then	the	index	
case	was	moved	into	the	housing	container	of	a	secondary	individual	
and	the	primary	individual	was	checked	for	the	presence	of	bacteria	
(Figure	3b).	This	process	was	continued	until	the	tenth	individual	was	
reached.	For	these	pairwise	interactions,	we	calculated	the	difference	
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in	boldness	between	interacting	spiders	by	subtracting	the	“latency	to	
move”	value	of	the	unexposed	individual	from	the	“latency	to	move”	
value	of	 the	 exposed	 individual,	where	positive	values	 denote	pairs	
where	the	exposed	spider	was	bolder	(an	important	predictor	of	trans-
mission;	Keiser,	Pinter-	Wollman,	et	al.,	2016).

2.6 | Social contact networks and network analysis

To	 determine	 the	 social	 network	 structure	 of	 intact	 colonies,	 we	
observed	 resting	 interactions	 among	 spiders	 in	 laboratory	 colonies.	
Twenty-	four	colonies	each	consisting	of	10–11	adult	female	spiders,	
individually	marked	with	acrylic	paint	dots	atop	their	dorsal	abdomen,	
were	kept	in	710-	ml	round	plastic	containers	with	chicken	wire	that	
allowed	them	to	build	a	retreat	and	a	capture	web.	Individuals	in	each	
group	came	from	the	same	source	colony	(we	used	three	source	col-
onies	which	produced	10,	9	and	5	experimental	colonies	each).	We	
manually	 noted	 the	 resting	 interaction	 patterns	 of	 all	 individuals	 in	
each	 colony.	We	defined	 interactions	between	 resting	 group	mem-
bers	 as	 a	 physical	 contact	 between	 any	 body	 parts	 of	 two	 spiders.	
Each	 group	was	 observed	 for	 6.5	weeks.	 Resting	 interactions	were	
observed	three	times	a	week	with	2–3	days	separating	each	observa-
tion.	Thus,	we	obtained	19	resting	networks	for	each	group	totalling	
456	networks.	Because	groups	were	tracked	for	almost	2	months	and	
mortality	 occurred	 over	 time,	 we	 obtained	 interaction	 networks	 of	
groups	of	different	sizes.

To	 quantify	 interaction	 patterns	within	 colonies,	we	 used	 three	
network	measures	 calculated	 using	 the	 igraph	 package	 in	 R	version	
3.1.2	(Csardi	&	Nepusz,	2006;	R	Core	Team,	2014):	 (i)	network	den-
sity,	the	ratio	between	the	number	of	observed	links	and	all	possible	
links,	which	quantifies	how	tightly	connected	the	individuals	are	in	the	
group;	(ii)	clustering	coefficient,	the	ratio	of	observed	links	connecting	
a	node’s	neighbours	 to	each	other	and	the	maximum	possible	num-
ber	of	such	 links,	which	quantifies	 the	 likelihood	that	an	 individual’s	
neighbours	 are	 also	 connected	 to	 one	 another;	 and	 (iii)	Modularity	
(Q),	which	quantifies	the	separation	of	the	network	into	densely	con-
nected	subgroups,	defined	using	the	“leading	eigenvector”	clustering	
algorithm	(Newman,	2006).	To	compare	whether	the	above	network	
measures	differed	from	those	expected	if	 individuals	 interacted	ran-
domly,	we	performed	simulations	which	generated	random	networks	
with	 a	 given	 degree	 sequence,	 using	 the	 degree.sequence.game	 R	

function	(Molloy	&	Reed,	1995),	and	compared	these	simulated	values	
to	those	for	our	observed	networks	(Data	S1).

2.7 | Statistical analyses

2.7.1 | Bacterial transmission within colonies

We	used	 a	 generalized	 linear	mixed	model	with	 a	 log-	link	 function	
for	count	data	(number	of	spiders	exposed)	with	the	following	inde-
pendent	variables:	the	number	of	bold	spiders	in	the	group	(0,	1	or	3;	
categorical	 variable),	 group	 size	 (10	or	30;	 categorical	 variable),	 the	
boldness	value	of	 the	 index	case	 (continuous	variable),	body	condi-
tion	of	the	index	case	(continuous	variable),	group	mean	body	condi-
tion	(continuous	variable),	and	the	interaction	between	the	number	of	
bold	spiders	 in	the	groups	and	group	mean	body	condition	 (all	non-	
significant	 interaction	terms	were	removed	for	model	simplification;	
Crawley,	2012;	see	Data	S1).	Experimental	colony	ID	nested	in	source	
colony	ID	was	included	as	a	random	intercept	in	the	model	(see	details	
in	Data	S1).	For	groups	that	contained	both	bold	and	shy	spiders,	we	
also	performed	a	univariate	nominal	logistic	regression	model	predict-
ing	the	likelihood	of	an	individual	acquiring	the	bacteria	based	on	their	
own	behavioural	phenotype	(shy	vs.	bold),	where	we	also	included	in-
dividual	ID	nested	in	experimental	group	ID	as	a	random	effect.

2.7.2 | Transmission via daisy- chain and 
star networks

To	analyse	whether	successful	transmission	took	place	at	each	step,	
we	used	nominal	logistic	regressions	with	the	following	independent	
variables:	transmission	step,	difference	in	boldness	between	interact-
ing	individuals,	index	case	body	condition,	susceptible	individual	body	
condition,	and	the	pairwise	 interaction	between	these	variables	and	
transmission	step	(Table	1).	Then,	we	removed	non-	significant	inter-
action	terms	for	model	simplification	and	present	the	simplified	model	
here	(Crawley,	2012).

2.7.3 | Social network analysis

To	determine	the	effect	of	group	size	on	network	density,	clustering	
coefficient	and	modularity,	we	ran	three	linear	mixed	effects	models	

T A B L E  1  Results	from	a	general	linear	mixed	model	predicting	the	number	of	individuals	that	became	exposed	to	the	GFP-	transformed	
cuticular	bacteria	Pantoea	within	24	hr	of	interacting	with	an	experimental	index	case.	Significant	p-	values	are	denoted	with	an	asterisk

Effect Parameter estimate (95% CI) df χ2 p- value

Number	of	individuals	exposed	to	bacteria

Number	of	bold	spiders	in	colony −0.48	(−0.74	to	−0.245) 2 17.22 .0002*

Group	size −0.08	(−0.12	to	−0.043) 1 27.01 <.0001*

Index	case	boldness 0.0002	(−0.0004	to	0.0008) 1 0.55 .46

Index	case	body	condition −35.41	(−81.74	to	10.45) 1 2.28 .13

Mean	group	body	condition 162.71	(94.93–232.12) 1 22.81 <.0001*

Group	body	condition	×	Number	bold	
spiders	in	colony

−79.41	(−156.01	to	−4.81) 2 7.09 .03*
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(LMM)	because	the	distribution	of	all	the	response	variables	was	close	
to	normal.	Our	dependent	variables	were	network	density,	clustering	
coefficient	or	modularity,	and	number	of	individuals	in	the	group	was	
the	fixed	effect	in	all	three	models.	We	further	included	group	identity	
nested	in	colony	of	origin	as	a	random	effect	and	time	point	as	another	
random	effect	to	control	for	any	variation	caused	by	these	variables.	
LMMs	were	 implemented	 using	 the	 lme4	 package	 (Bates,	 Mächler,	
Bolker,	&	Walker,	2014)	in	R	version	3.1.2	(R	Core	Team,	2014).	To	
determine	the	confidence	of	our	estimates,	we	ran	a	Wald	chi-	squared	
test	using	the	ANOVA	R	function	on	the	LMM	results.

3  | RESULTS

3.1 | Bacterial transmission within colonies

Groups	 of	 10	 spiders	 experienced	 approximately	 five	 times	 more	
transmission	 events	 compared	 to	 groups	 of	 30	 spiders	 (GLMM:	
χ2	=	27.01,	 df	=	1,	 p	<	.0001;	 Table	1,	 Figure	1).	 Groups	 contain-
ing	 only	 one	 bold	 susceptible	 spider	 experienced	 over	 50%	 fewer	
transmission	 events	 than	 groups	 containing	 three	 or	 zero	 bold	
spiders	 (GLMM:	 χ2	=	17.22,	 df	=	2,	 p	=	.0002;	 Table	1,	 Figure	1).	
Groups	containing	spiders	in	better	body	condition	experienced	an	
increased	 incidence	 of	 bacteria	 transmission	 (GLMM:	 χ2	=	22.81,	
df	=	1,	 p	<	.0001;	 Table	1,	 Figure	2).	 However,	 this	 trend	 differed	
for	groups	depending	on	their	phenotypic	composition	 (interaction	
term:	 χ2	=	7.09,	 df	=	2,	 p	=	.03;	 Table	1,	 Figure	2):	 this	 trend	 was	
strongest	in	colonies	containing	three	bold	spiders	(R2	=	0.25)	com-
pared	to	those	with	one	or	zero	bold	spiders	(R2	=	0.03	and	R2	=	0.05	
respectively).	Neither	 the	boldness	value	 (χ2	=	0.55,	df	=	1,	p	=	.46)	
nor	the	body	condition	(χ2	=	2.28,	df	=	1,	p	=	.13)	of	the	index	case	
was	 associated	 with	 the	 degree	 of	 bacterial	 transmission	 in	 their	
social	 group.	 Lastly,	 averaged	 across	 all	 groups	 containing	 one	 or	
three	bold	spiders	and	both	group	sizes,	the	per	capita	likelihood	of	
acquiring	 bacteria	was	 four	 times	 greater	 for	 bold	 spiders	 (12/87)	

compared	to	shy	spiders	(20/591)	(univariate	nominal	logistic	regres-
sion:	χ2	=	11.66,	df	=	1,	p	=	.0006).

3.2 | Transmission via daisy- chain vs. star networks

For	each	interaction	network	structure,	the	likelihood	of	transmission	
decreased	 over	 each	 step	 of	 transmission	 (nominal	 logit:	 p < .0001; 
Table	2,	Figure	3).	For	daisy-	chain	interactions	(nominal	logit:	χ2	=	6.28,	
df	=	1,	p	=	.01)	and	star	networks	(χ2	=	10.41,	df	=	1,	p	=	.001),	trans-
mission	was	more	 likely	to	take	place	when	the	exposed	spider	was	
bolder	 than	 the	 susceptible	 spider	with	whom	 it	 interacted,	 as	 pre-
viously	 reported	 (Keiser,	Pinter-	Wollman,	 et	al.,	 2016).	 For	 star	net-
works,	we	found	that	the	rate	of	transmission	across	time	steps	was	
strongly	influenced	by	the	body	conditions	of	both	the	exposed	indi-
vidual	(nominal	logit:	χ2	=	15,309.73,	df	=	6,	p	<	.0001)	and	the	suscep-
tible	spiders	with	which	they	interacted	(nominal	logit:	χ2	=	1,302.41,	
df	=	5,	 p	<	.0001).	 That	 is,	 bacterial	 transmission	was	more	 likely	 to	
occur	between	spiders	 in	better	body	condition,	although	this	 trend	
was	stronger	during	earlier	steps	in	the	interaction	chain.

3.3 | Social network analysis

Interaction	density	decreased	with	group	size	and	network	modularity	
increased	with	group	size.	Network	density	was	negatively	associated	
with	group	size	(LMM:	χ2	=	192.17,	df	=	1,	p	<	.0001;	Figure	4),	while	
network	modularity	was	positively	associated	with	group	size	(LMM:	
χ2	=	134.47,	df	=	1,	p	<	.0001;	Figure	4).	We	did	not	detect	a	relation-
ship	 between	 network	 clustering	 coefficient	 and	 group	 size	 (LMM:	
χ2	=	0.21,	df	=	1,	p	=	.65).

4  | DISCUSSION

The	traits	of	the	first	individual	to	become	exposed	to	a	novel	microbe	
(e.g.	the	index	case	of	an	infectious	disease	outbreak)	can	impact	the	

F I G U R E  1  Groups	of	10	spiders	experienced	more	bacterial	
transmission	compared	to	groups	of	30	spiders,	regardless	of	group	
composition.	However,	groups	containing	only	one	bold	spider	
experienced	the	least	bacterial	transmission	in	each	group	size

F I G U R E  2  Groups	containing	spiders	in	better	body	condition	
experienced	greater	bacteria	transmission.	This	trend	was	strongest	in	
colonies	containing	three	bold	spiders	(R2	=	0.25)	compared	to	those	
with	one	or	zero	bold	spiders	(R2	=	0.03	and	R2	=	0.05	respectively).	
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trajectory	of	transmission	dynamics.	However,	the	magnitude	of	their	
influence	undoubtedly	depends	jointly	on	their	traits	and	the	individu-
als	with	whom	they	interact	(Salje	et	al.,	2016).	Here,	we	found	that	
group-	wide	transmission	of	a	benign	GFP-	labelled	cuticular	bacterium	
is	greater	 in	groups	of	10	 individuals	compared	to	30	 in	colonies	of	
the	social	spider	S. dumicola,	and	that	groups	containing	only	one	bold	
individual	experienced	the	least	transmission,	regardless	of	the	traits	

of	 the	 index	case.	Furthermore,	we	found	that	bacteria	were	 trans-
mitted	to	more	individuals	along	a	star	network	of	social	interactions	
than	along	daisy-	chains,	although	transmission	depended	on	the	traits	
of	both	interacting	individuals.	Finally,	by	observing	the	contact	net-
works	of	colonies	of	varying	sizes,	we	infer	that	the	greater	incidence	
of	 transmission	 in	 groups	 of	 10	 spiders	may	 be	 a	 product	 of	 their	
greater	density	and	lower	modularity.

Effect df χ2 p- value

Daisy-	chain	interactions

Transmission	step 3 50.62 <.0001*

Index	case	body	condition 1 1.96 .16

Susceptible	individual’s	body	condition 1 0.41 .52

Difference	in	boldness 1 6.28 .01*

Star	network	interactions

Transmission	step 9 9,388.29 <.0001*

Exposed	individual’s	body	condition 1 3.33 .0681

Susceptible	individual’s	body	condition 1 0.31 .5798

Difference	in	boldness	value 1 10.41 .001*

Transmission	step	×	Exposed	body	condition 6 15,309.73 <.0001*

Transmission	step	×	Susceptible	body	
condition

5 1,302.41 <.0001*

Transmission	step	×	Difference	in	boldness 8 901.85 <.0001*

Significant	p-values	are	denoted	by	an	asterisk.

T A B L E  2  Results	from	nominal	logistic	
regressions	predicting	the	number	of	
individuals	that	became	exposed	to	
bacteria	via	daisy-	chain	social	interactions	
or	iterative	social	interactions

F I G U R E  3  Schematic	depiction	of	
(a)	daisy-	chain	interactions	and	(b)	star	
network	interactions.	Each	interaction	
was	separated	by	24	hr.	(c)	The	proportion	
of	social	interactions	which	resulted	in	
successful	transmission	events	across	
10	days	of	interactions	in	each	network	
type.	Note	that	the	star	networks	can	
reach	steps	of	completely	unsuccessful	
transmission	(e.g.	time	point	=	7)	and	then	
recover	because	the	same	index	case	is	
interacting	with	new	individuals,	whereas	
the	daisy-	chain	transmission	cannot	
recover	from	an	unsuccessful	transmission	
because	the	bacterial	source	is	lost
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Group	 size	 and	 phenotypic	 composition	 have	 both	 been	 inde-
pendently	demonstrated	as	important	predictors	of	groups’	suscepti-
bility	to	disease	outbreaks	(Gao,	Bidochka,	&	Thompson,	2012).	Here,	
we	observed	more	bacterial	transmission	in	groups	of	10	individuals	
compared	 to	 groups	 of	 30.	 This	 seems	 counterintuitive,	 as	 spiders	
could	 transmit	bacteria	 along	 star	networks	 to	 at	 least	 six	other	 in-
dividuals	 and	 up	 to	 three	 steps	 away	 along	 daisy-	chains,	 and	 both	
transmission	dynamics	may	have	played	out	simultaneously	 in	social	
groups.	In	general,	transmission	often	increases	with	host	density	for	
directly	 transmitted	 microbes	 (i.e.	 density-	dependent	 transmission:	
Begon	et	al.,	2002;	Côté	&	Poulin,	1995).	However,	this	trend	is	not	
universal	(Nunn,	Jordán,	McCabe,	Verdolin,	&	Fewell,	2015),	and	may	
be	due	to	the	more	modular	network	structure	of	larger	groups	(Sah,	
Leu,	Cross,	Hudson,	&	Bansal,	2017).	We	also	found	that	groups	con-
taining	only	one	bold	spider	experienced	fewer	transmission	events,	
regardless	of	 the	traits	of	 the	 index	case,	 recapitulating	the	findings	
of	an	earlier	study	on	this	species	(Keiser,	Howell,	et	al.,	2016).	It	may	
be	that	the	role	of	a	single	bold	spider	plays	in	structuring	the	colony	
has	 important	 consequences	 for	 group-	wide	 transmission	 (Pinter-	
Wollman	et	al.,	2016).	Although	bold	spiders	were	more	likely	to	be-
come	exposed	 than	 shy	 spiders	overall,	 the	difference	 in	per	 capita	
exposure	was	minute	 in	groups	with	only	one	bold	spider.	Thus,	the	
reduction	in	exposure	rate	in	these	groups	is	unlikely	to	be	a	product	
of	phenotype-	biased	exposure.	Theory	incorporating	both	group	phe-
notypic	composition	and	size	to	predict	transmission	patterns	is	cur-
rently	absent	from	the	literature,	possibly	because	the	dynamics	differ	
based	on	 the	 focal	 phenotype	and	 system	under	 consideration	 (e.g.	
social	insect	caste	ratio	vs.	the	ratio	of	demonstrators	to	observers	in	
a	fish	school).	Nevertheless,	the	patterns	by	which	individuals	within	
a	group	interact	(i.e.	social	network	structure)	will	undoubtedly	deter-
mine	 transmission	 dynamics	 (Hock	&	Fefferman,	 2012;	 Stroeymeyt,	

Casillas-	Pérez,	 &	 Cremer,	 2014),	 especially	 if	 interaction	 patterns	
change	across	different	group	sizes	or	compositions.

We	 found	 that	 network	modularity	 increased	with	 group	 size,	 a	
trend	 commonly	 reported	 and	 often	 suggested	 to	 reduce	 parasite	
transmission	 in	 larger	 groups	 (Nunn	 et	al.,	 2015;	 Sah	 et	al.,	 2017).	
High	 network	 modularity	 suggests	 that	 because	 social	 interactions	
within	 larger	groups	are	broken	 into	 several	 smaller	 subgroups	with	
few	connections	between	subgroups,	transmission	in	large	groups	(e.g.	
of	30	spiders)	may	have	been	restricted	to	 individuals	within	a	sub-
group.	However,	more	transmission	events	may	have	eventually	taken	
place	had	there	been	time	for	individuals	to	move	between	subgroups	
(Eubank	et	al.,	2004).	In	Belding’s	ground	squirrels,	for	example,	juve-
nile	males	that	move	between	groups	increase	the	overall	incidence	of	
intestinal	parasite	infections	by	connecting	individuals	from	different	
subgroups	(VanderWaal,	Atwill,	Hooper,	Buckle,	&	McCowan,	2013).	
Furthermore,	smaller	groups	were	denser,	meaning	their	interactions	
networks	 were	 closer	 to	 interaction	 saturation	 compared	 to	 larger	
groups,	thus	providing	more	opportunities	for	transmission	among	all	
group	 members.	 Similarly,	 a	 positive	 relationship	 between	 network	
density	and	parasite	 transmission	has	been	described	 in	bumblebee	
colonies	 (Otterstatter	&	Thomson,	2007).	Taken	together,	group	size	
appears	to	play	a	large	role	in	dictating	transmission	dynamics	because	
it	influences	network	structure,	which	is	the	organizing	force	that	de-
termines	how	many	and	which	individuals	will	interact.

Our	experimental	manipulations	of	social	 interaction	patterns	fur-
ther	suggest	that	network	structure	may	be	the	most	important	force	
in	shaping	transmission	dynamics	in	this	system.	More	transmission	oc-
curred	in	star	networks	than	along	daisy-	chains.	That	is,	auxiliary	cases	
of	bacterial	exposure	are	more	likely	to	arise	from	a	series	of	 individ-
uals	 interacting	directly	with	 the	 index	case,	 rather	 than	transmission	
occurring	 along	 a	 chain	 of	 interacting	 individuals.	 This	 suggests	 that	

F I G U R E  4  Examples	of	empirical	
networks	differing	in	groups	size	and	
modularity:	observed	interaction	network	
of	(a)	5	spiders	with	low	modularity;	(b)	
10	spiders	with	low	modularity;	and	(c)	10	
spiders	with	high	modularity.	(d)	Larger	
networks	were	less	dense	and	(e)	more	
modular	than	their	smaller	counterparts
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transmission	may	be	dose-	dependent,	where	recipients	of	cuticular	bac-
teria	harbour	smaller	and	smaller	bacterial	loads	at	each	step	of	trans-
mission,	as	has	been	observed	in	some	systems	(Pulkkinen,	2007).	Yet,	
we	observed	that	the	index	case	harbours	a	bacterial	load	large	enough	
to	transmit	bacteria	to	many	social	partners,	even	many	days	after	expo-
sure	(Figure	3).	Thus,	transmission	along	star	networks	appears	to	mimic	
that	of	“stuttering	chains”	that	cannot	initiate	self-	sustaining	epidemics,	
but	rather	follows	stochastic	transmission	chains	that	stutter	towards	
extinction	(Blumberg	&	Lloyd-	Smith,	2013).	The	transmission	data	aris-
ing	from	our	star	networks	and	daisy-	chains	suggest	that	one	can	pre-
dict	the	proportion	of	successful	transmission	events	for	a	given	step	
in	the	daisy-	chain	via	the	proportion	of	successes	in	the	previous	time	
from	both	networks	(Pdct	and	Pst,	respectively,	where	t	is	the	time	step	
under	consideration).	At	any	given	time	step,	one	can	calculate	Pdct	as:	

Using	this	equation,	we	can	predict	the	probability	of	transmission	
on	 a	 daisy-	chain	with	 high	 accuracy	 (Table	3).	We	 hope	 that	 future	
studies	will	 experimentally	manipulate	 interaction	 patterns	 to	 com-
pare	 transmission	along	 these	 types	of	networks	 in	 regard	 to	 infec-
tious	diseases	with	variable	transmission	modes	(Read	et	al.,	2012).

The	transmission	dynamics	we	observed	are	of	a	benign	cuticular	
bacteria	lacking	infection-	induced	sickness	behaviours	and	mortality.	
Transmission	 dynamics	 could	 differ	when	 studying	 coevolved	 host–
pathogen	systems	or	emerging	disease	with	which	hosts	have	no	ex-
perience.	Still,	our	study	can	inform	the	modes	by	which	microbes	are	
shared	among	hosts	of	social	species	and	shape	resident	microbiome	
communities	(Ezenwa,	Gerardo,	Inouye,	Medina,	&	Xavier,	2012;	Song	
et	al.,	2013).	Our	methods	represent	a	step	forward	for	experimental	
studies	 tracking	 transmission	 across	 social	 contacts	 because	 of	 our	
ability	 to	 connect	 individual	 traits	 and	 group	 properties	 (e.g.	 group	
size,	composition)	with	network	structure	and	transmission	rates,	and	
further	experimentally	manipulate	network	structure	itself.	We	there-
fore	hope	that	these	data	will	prompt	other	researchers	to	use	similar	
methods	for	evaluating	the	transmission	of	disease-	causing	infectious	
agents	and/or	beneficial	microbes	that	defend	against	 infection	 (e.g.	
chytridiomycosis;	Harris	et	al.,	2009;	Rebollar,	Simonetti,	Shoemaker,	
&	Harris,	2016).	In	conclusion,	our	data	show	that	reliable	and	vigilant	
tracking	of	social	contacts	in	the	initial	stages	of	an	outbreak	may	be	
vital	for	controlling	disease	outbreaks	(Meyers	et	al.,	2005),	and	that	

such	interactions	are	likely	to	change	based	on	the	social	context	of	
the	 index	 case	 rather	 than	 its	 own	 traits,	 potentially	 due	 to	 conse-
quences	on	social	network	structure.
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T A B L E  3  Observed	and	predicted	proportions	of	successful	
transmission	events	across	four	time	steps	in	a	daisy-	chain	network.	
The	predicted	values	are	calculated	based	on	the	proportion	of	
successful	transmission	events	from	daisy-	chain	and	star	networks	in	
the	previous	time	step	(i.e.	Pdcn	=	Pdcn-1…Psn-1…Pdcn-2	∙	Psn-2…)

Time step
Star network 
observed

Daisy- chain 
observed

Daisy- chain 
predicted

1 day 0.50 0.44 —

2	days 0.35 0.23 0.22

3	days 0.17 0.04 0.02

4	days 0.06 0.00 0.0001

https://doi.org/10.5061/dryad.47p7c
https://doi.org/10.5061/dryad.47p7c


     |  9Journal of Animal EcologyKEISER Et al.

Blumberg,	S.,	&	Lloyd-Smith,	J.	O.	 (2013).	 Inference	of	R0	and	 transmis-
sion	heterogeneity	from	the	size	distribution	of	stuttering	chains.	PLoS 
Computational Biology,	9,	e1002993.

Buhnerkempe,	M.	G.,	Roberts,	M.	G.,	Dobson,	A.	P.,	Heesterbeek,	H.,	Hudson,	
P.	J.,	&	Lloyd-Smith,	J.	O.	(2015).	Eight	challenges	in	modelling	disease	
ecology	in	multi-	host,	multi-	agent	systems.	Epidemics,	10,	26–30.

Côté,	I.	M.,	&	Poulin,	R.	(1995).	Parasitism	and	group	size	in	social	animals:	
A	meta-	analysis.	Behavioral Ecology,	6,	159–165.

Crawley,	M.	J.	(2012).	The R book.	Chichester,	UK:	John	Wiley.
Csardi,	G.,	&	Nepusz,	T.	(2006).	The	igraph	software	package	for	complex	

network	research.	InterJournal, Complex Systems,	1695,	1–9.
Dimbi,	 S.,	Maniania,	N.	K.,	&	Ekesi,	 S.	 (2013).	Horizontal	 transmission	of	

Metarhizium anisopliae	in	fruit	flies	and	effect	of	fungal	infection	on	egg	
laying	and	fertility.	Insects,	4,	206–216.

Eubank,	S.,	Guclu,	H.,	Kumar,	V.	A.,	Marathe,	M.	V.,	Srinivasan,	A.,	Toroczkai,	
Z.,	&	Wang,	N.	(2004).	Modelling	disease	outbreaks	in	realistic	urban	
social	networks.	Nature,	429,	180–184.

Ezenwa,	V.	O.,	Gerardo,	N.	M.,	 Inouye,	D.	W.,	Medina,	M.,	&	Xavier,	J.	B.	
(2012).	Animal	behavior	and	the	microbiome.	Science,	338,	198–199.

Fenton,	A.,	 Fairbairn,	 J.	 P.,	 Norman,	 R.,	 &	 Hudson,	 P.	 J.	 (2002).	 Parasite	
transmission:	Reconciling	theory	and	reality.	Journal of Animal Ecology,	
71,	893–905.

Gao,	Q.,	Bidochka,	M.	J.,	&	Thompson,	G.	J.	(2012).	Effect	of	group	size	and	
caste	ratio	on	individual	survivorship	and	social	immunity	in	a	subterra-
nean	termite.	Acta Ethologica,	15,	55–63.

Gopinath,	S.,	Lichtman,	J.	S.,	Bouley,	D.	M.,	Elias,	J.	E.,	&	Monack,	D.	M.	
(2014).	Role	of	disease-	associated	tolerance	in	infectious	superspread-
ers.	Proceedings of the National Academy of Sciences of the United States 
of America,	111,	15780–15785.

Grinsted,	L.,	Pruitt,	J.	N.,	Settepani,	V.,	&	Bilde,	T.	(2013).	Individual	person-
alities	 shape	 task	differentiation	 in	a	 social	 spider.	Proceedings of the 
Royal Society B: Biological Sciences,	280,	20131407.

Harris,	R.	N.,	Brucker,	R.	M.,	Walke,	J.	B.,	Becker,	M.	H.,	Schwantes,	C.	R.,	
Flaherty,	D.	C.,	…	Vredenburg,	V.	T.	(2009).	Skin	microbes	on	frogs	pre-
vent	morbidity	and	mortality	caused	by	a	lethal	skin	fungus.	The ISME 
Journal,	3,	818–824.

Haydon,	D.	T.,	Chase–Topping,	M.,	Shaw,	D.,	Matthews,	L.,	Friar,	J.,	Wilesmith,	J.,	
&	Woolhouse,	M.	(2003).	The	construction	and	analysis	of	epidemic	trees	
with	reference	to	the	2001	UK	foot–and–mouth	outbreak.	Proceedings of 
the Royal Society of London B: Biological Sciences,	270,	121–127.

Henschel,	J.	R.	 (1998).	Predation	on	social	and	solitary	 individuals	of	 the	
spider	Stegodyphus dumicola	(Araneae,	Eresidae).	Journal of Arachnology,	
26,	61–69.

Henschel,	 J.,	 Lubin,	Y.,	 &	 Schneider,	 J.	 (1995).	 Sexual	 competition	 in	 an	
inbreeding	 social	 spider,	 Stegodyphus dumicola	 (Araneae:	 Eresidae).	
Insectes Sociaux,	42,	419–426.

Hethcote,	 H.	 W.	 (1976).	 Qualitative	 analyses	 of	 communicable	 disease	
models.	Mathematical Biosciences,	28,	335–356.

Hock,	 K.,	 &	 Fefferman,	 N.	 H.	 (2012).	 Social	 organization	 patterns	 can	
lower	disease	risk	without	associated	disease	avoidance	or	immunity.	
Ecological Complexity,	12,	34–42.

Jakob,	E.	M.,	Marshall,	 S.	D.,	&	Uetz,	G.	W.	 (1996).	Estimating	 fitness:	A	
comparison	of	body	condition	indices.	Oikos,	77,	61–67.

Keiser,	 C.	 N.,	 Howell,	 K.	 A.,	 Pinter-Wollman,	 N.,	 &	 Pruitt,	 J.	 N.	 (2016).	
Personality	composition	alters	the	transmission	of	cuticular	bacteria	in	
social	groups.	Biology Letters,	12,	20160297.

Keiser,	C.	N.,	Jones,	D.	K.,	Modlmeier,	A.	P.,	&	Pruitt,	J.	N.	(2014).	Exploring	
the	effects	of	individual	traits	and	within-	colony	variation	on	task	dif-
ferentiation	and	collective	behavior	in	a	desert	social	spider.	Behavioral 
Ecology and Sociobiology,	68,	839–850.

Keiser,	C.	N.,	Pinter-Wollman,	N.,	Augustine,	D.	A.,	Ziemba,	M.	J.,	Hao,	L.,	
Lawrence,	J.	G.,	&	Pruitt,	J.	N.	(2016).	Individual	differences	in	boldness	
influence	 patterns	 of	 social	 interactions	 and	 the	 transmission	 of	 cu-
ticular	bacteria	among	group-	mates.	Proceedings of the Royal Society of 
London B: Biological Sciences,	283,	20160457.

Keiser,	C.	N.,	Pinter-Wollman,	N.,	Ziemba,	M.	J.,	Kothamasu,	K.	S.,	&	Pruitt,	
J.	N.	(2017).	Data	from:	The	index	case	is	not	enough:	Exploring	trait	
variation	 among	 individuals	 and	 social	 groups	 in	 bacterial	 transmis-
sion	 dynamics.	 Dryad Digital Repository,	 https://doi.org/10.5061/
dryad.47p7c

Keiser,	C.	N.,	&	Pruitt,	J.	N.	(2014).	Personality	composition	is	more	import-
ant	than	group	size	in	determining	collective	foraging	behaviour	in	the	
wild. Proceedings of the Royal Society of London B: Biological Sciences,	
281,	20141424.

Keiser,	C.	N.,	Shearer,	T.	A.,	DeMarco,	A.	E.,	Brittingham,	H.	A.,	Knutson,	K.	
A.,	Kuo,	C.,	…	Pruitt,	J.	N.	(2016).	Cuticular	bacteria	appear	detrimen-
tal	 to	social	 spiders	 in	mixed	but	not	monoculture	exposure.	Current 
Zoology,	62,	377–384.

Keiser,	C.	N.,	Wright,	C.	M.,	&	Pruitt,	J.	N.	(2016).	Increased	bacterial	load	
can	reduce	or	negate	the	effects	of	keystone	individuals	on	group	col-
lective	behaviour.	Animal Behaviour,	114,	211–218.

Lloyd-Smith,	 J.	 O.,	 Schreiber,	 S.	 J.,	 Kopp,	 P.	 E.,	 &	 Getz,	 W.	 (2005).	
Superspreading	and	the	effect	of	individual	variation	on	disease	emer-
gence.	Nature,	438,	355–359.

Lokhov,	A.	Y.,	Mézard,	M.,	Ohta,	H.,	&	Zdeborová,	L.	(2014).	Inferring	the	
origin	 of	 an	 epidemic	 with	 a	 dynamic	 message-	passing	 algorithm.	
Physical Review E,	90,	012801.

Martin,	 L.	B.,	Burgan,	 S.	C.,	Adelman,	J.	 S.,	&	Gervasi,	 S.	 S.	 (2016).	Host	
competence:	An	organismal	trait	to	integrate	immunology	and	epide-
miology.	Integrative and Comparative Biology,	56,	1225–1237.

Meadow,	R.,	Vandenberg,	J.	D.,	&	Shelton,	A.	M.	(2000).	Exchange	of	inoc-
ulum	of	Beauveria bassiana	(Bals.)	Vuill.	(Hyphomycetes)	between	adult	
flies	of	the	cabbage	maggot	Delia radicum	L.	 (Diptera:	Anthomyiidae).	
Biocontrol Science and Technology,	10,	479–485.

Meyers,	 L.	 A.,	 Pourbohloul,	 B.,	 Newman,	 M.	 E.,	 Skowronski,	 D.	 M.,	 &	
Brunham,	R.	C.	(2005).	Network	theory	and	SARS:	Predicting	outbreak	
diversity.	Journal of Theoretical Biology,	232,	71–81.

Molloy,	M.,	&	Reed,	B.	 (1995).	A	critical	point	 for	 random	graphs	with	a	
given	degree	sequence.	Random Structures and Algorithms,	6,	161–180.

Moussaïd,	 M.,	 Brighton,	 H.,	 &	 Gaissmaier,	W.	 (2015).	 The	 amplifica-
tion	 of	 risk	 in	 experimental	 diffusion	 chains.	 Proceedings of the 
National Academy of Sciences of the United States of America,	112,	
5631–5636.

Moussaïd,	M.,	&	Yahosseini,	K.	S.	 (2016).	Can	simple	transmission	chains	
foster	 collective	 intelligence	 in	 binary-	choice	 tasks?	 PLoS ONE,	 11,	
e0167223.

Newman,	M.	E.	(2006).	Finding	community	structure	in	networks	using	the	
eigenvectors	of	matrices.	Physical Review E,	74,	036104.

Nunn,	C.	L.,	Jordán,	F.,	McCabe,	C.	M.,	Verdolin,	J.	L.,	&	Fewell,	J.	H.	(2015).	
Infectious	 disease	 and	 group	 size:	More	 than	 just	 a	 numbers	 game.	
Philosophical Transactions of the Royal Society B,	370,	20140111.

Otterstatter,	M.	C.,	&	Thomson,	J.	D.	(2007).	Contact	networks	and	trans-
mission	 of	 an	 intestinal	 pathogen	 in	 bumble	 bee	 (Bombus impatiens)	
colonies.	Oecologia,	154,	411–421.

Paull,	 S.	H.,	 Song,	 S.,	McClure,	 K.	M.,	 Sackett,	 L.	 C.,	 Kilpatrick,	A.	M.,	 &	
Johnson,	 P.	 T.	 (2012).	 From	 superspreaders	 to	 disease	 hotspots:	
Linking	 transmission	 across	 hosts	 and	 space.	Frontiers in Ecology and 
the Environment,	10,	75–82.

Perkins,	 S.	 E.,	 Cagnacci,	 F.,	 Stradiotto,	 A.,	 Arnoldi,	 D.,	 &	 Hudson,	 P.	 J.	
(2009).	Comparison	of	 social	networks	derived	 from	ecological	data:	
Implications	for	inferring	infectious	disease	dynamics.	Journal of Animal 
Ecology,	78,	1015–1022.

Pinter-Wollman,	N.,	Keiser,	C.	N.,	Wollman,	R.,	&	Pruitt,	J.	N.	(2016).	The	
effect	of	keystone	individuals	on	collective	outcomes	can	be	mediated	
through	interactions	or	behavioral	persistence.	The American Naturalist,	
188,	240–252.

Pulkkinen,	 K.	 (2007).	 Microparasite	 transmission	 to	 Daphnia magna  
decreases	in	the	presence	of	conspecifics.	Oecologia,	154,	45–53.

R	Core	Team.	(2014).	R: A language and environment for statistical computing. 
Vienna,	Austria:	R	Foundation	for	Statistical	Computing.

https://doi.org/10.5061/dryad.47p7c
https://doi.org/10.5061/dryad.47p7c


10  |    Journal of Animal Ecology KEISER Et al.

Read,	 J.	 M.,	 Edmunds,	W.	 J.,	 Riley,	 S.,	 Lessler,	 J.,	 &	 Cummings,	 D.	 A.	 T.	
(2012).	Close	encounters	of	the	infectious	kind:	Methods	to	measure	
social	mixing	behaviour.	Epidemiology and Infection,	140,	2117–2130.

Rebollar,	E.	A.,	Simonetti,	S.	J.,	Shoemaker,	W.	R.,	&	Harris,	R.	N.	 (2016).	
Direct	and	indirect	horizontal	transmission	of	the	antifungal	probiotic	
bacterium	 Janthinobacterium lividum	 on	 green	 frog	 (Lithobates clami-
tans)	tadpoles.	Applied and Environmental Microbiology,	82,	2457–2466.

Sah,	P.,	Leu,	S.	T.,	Cross,	P.	C.,	Hudson,	P.	J.,	&	Bansal,	S.	(2017).	Unraveling	
the	disease	consequences	and	mechanisms	of	modular	structure	in	an-
imal	social	networks.	Proceedings of the National Academy of Sciences of 
the United States of America,	114,	4165–4170.

Salje,	H.,	Lessler,	J.,	Paul,	K.	K.,	Azman,	A.	S.,	Rahman,	M.	W.,	Rahman,	M.,	
…	Cauchemez,	S.	(2016).	How	social	structures,	space,	and	behaviors	
shape	 the	spread	of	 infectious	diseases	using	chikungunya	as	a	case	
study.	 Proceedings of the National Academy of Sciences of the United 
States of America,	113,	13420–13425.

Sloan	Wilson,	D.,	Clark,	A.	B.,	Coleman,	K.,	&	Dearstyne,	T.	(1994).	Shyness	
and	 boldness	 in	 humans	 and	 other	 animals.	 Trends in Ecology and 
Evolution,	9,	442–446.

Song,	S.	J.,	Lauber,	C.,	Costello,	E.	K.,	Lozupone,	C.	A.,	Humphrey,	G.,	Berg-
Lyons,	 D.,	 …	 Nakielny,	 S.	 (2013).	 Cohabiting	 family	 members	 share	
	microbiota	with	one	another	and	with	their	dogs.	Elife,	2,	e00458.

Stroeymeyt,	N.,	Casillas-Pérez,	B.,	&	Cremer,	S.	(2014).	Organisational	im-
munity	in	social	insects.	Current Opinion in Insect Science,	5,	1–15.

VanderWaal,	 K.	 L.,	 Atwill,	 E.	 R.,	 Hooper,	 S.,	 Buckle,	 K.,	 &	McCowan,	 B.	
(2013).	 Network	 structure	 and	 prevalence	 of	 Cryptosporidium	 in	
Belding’s	 ground	 squirrels.	 Behavioral Ecology and Sociobiology,	 67,	
1951–1959.

Wright,	C.	M.,	Keiser,	C.	N.,	&	Pruitt,	 J.	N.	 (2015).	 Personality	 and	mor-
phology	 shape	 task	 participation,	 collective	 foraging	 and	 escape	 be-
haviour	 in	 the	 social	 spider	 Stegodyphus dumicola. Animal Behaviour,	
105,	47–54.

SUPPORTING INFORMATION

Additional	 Supporting	 Information	 may	 be	 found	 online	 in	 the	 
supporting	information	tab	for	this	article.

How to cite this article:	Keiser	CN,	Pinter-Wollman	 
N,	Ziemba	MJ,	Kothamasu	KS,	Pruitt	JN.	The	index	case	is	not	
enough:	Variation	among	individuals,	groups	and	social	
networks	modify	bacterial	transmission	dynamics.	J Anim Ecol. 
2017;00:1–10. https://doi.org/10.1111/1365-2656.12729

https://doi.org/10.1111/1365-2656.12729

