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Abstract  The function of a network is affected by its structure. For example, the presence of highly interactive individuals, or 

hubs, influences the extent and rate of information spread across a network. In a network of interactions, the duration over which 

individual variation in interactions persists may affect how the network operates. Individuals may persist in their behavior over 

time and across situations, often referred to as personality. Colonies of social insects are an example of a biological system in 

which the structure of the coordinated networks of interacting workers may greatly influence information flow within the colony, 

and therefore its collective behavior. Here I investigate the effects of persistence in walking patterns on interaction networks us-

ing computer simulations that are parameterized using observed behavior of harvester ants. I examine how the duration of persis-

tence in spatial behavior influences network structure. Furthermore, I explore how spatial features of the environment affect the 

relationship between persistent behavior and network structure. I show that as persistence increases, the skewness of the weighted 

degree distribution of the interaction network increases. However, this relationship holds only when ants are confined in a space 

with boundaries, but not when physical barriers are absent. These findings suggest that the influence of animal personalities on 

network structure and function depends on the environment in which the animals reside [Current Zoology 61 (1): 98–106, 2015]. 
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Complex systems such as the brain and social insect 
colonies operate as networks of interacting agents. The 
structure of interaction networks determines how one 
region of the network is connected to another and how 
far and rapidly information propagates across the net-
work (Watts and Strogatz, 1998). Thus, network struc-
ture affects its response to changes in the environment 
such as disturbances (Callaway et al., 2000) or changes 
in food availability (Sendova-Franks et al., 2010). Indi-
viduals vary in number and rate of interactions (Hock et 
al., 2010) because of differences during development 
(McDonald, 2007) age, sex (Croft et al., 2005), and ge-
netic relatedness (Pinter-Wollman et al., 2009). For exa-
mple, in certain networks the distribution of interactions 
among individuals, i.e., the weighted degree (or strength) 
distribution (Barrat et al., 2004), may be skewed, with 
few highly connected individuals, often called ‘hubs’, 
and many individuals that experience only few interac-
tions. In a network with highly connected individuals, 
these hubs have a greater effect on how fast information 
flows on the network than the other individuals in the 
network (Barabasi and Albert, 1999).  

Natural selection acts on individual variation. There-

fore, it is important to understand the causes and con-
sequences of variation among individuals in biological 
systems. In recent years, there has been a growing in-
terest in understanding the tradeoffs caused by consis-
tent behavioral variation among animals that persists 
across more than one situation and over time, termed 
personalities (Gosling, 2001), behavioral syndromes 
(Sih et al., 2004), or temperament (Reale et al., 2007). 
Network position is an example of a behavior that may 
persist, affecting the collective behavior and fitness of 
the group as a whole (Sih et al., 2009; Wilson et al., 
2013; Pinter-Wollman et al., 2014). If an individual 
occupies a central position in the network for a long 
time, the loss of this central node may cause the net-
work to break down (Lusseau and Newman, 2004; 
Flack et al., 2006). However, in some systems, other 
individuals may quickly take over the role of the re-
moved group members (Robson and Traniello, 1999; 
Beverly et al., 2009; Pinter-Wollman et al., 2012). Here 
I investigate how the duration over which individual 
variation in behavior persists affects social network 
structure. 

Social insects in which workers are sterile are unique 
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in that natural selection acts on the colony as a whole 
instead of on individual workers. These sterile workers 
use local interactions to produce complex colony beha-
viors. Many social insect interaction networks are dis-
tributed and operate as an integrated system, like regu-
latory or engineered networks, in contrast with social 
networks, because unlike other social groups, selection 
is not acting on each sterile individual but on the group 
as a whole (Fewell, 2003; Waters and Fewell, 2012). 
Still, individual variation is prevalent in social insects 
(Jandt et al., 2014); workers vary in which tasks they 
perform and in how diligently they perform these tasks 
(Jaisson et al., 1988; Retana and Cerda, 1991; Gordon et 
al., 2005; Dornhaus, 2008; Pinter-Wollman et al., 2012), 
and such behavioral variation persists over time and 
across situations (Jandt et al., 2014). Individual workers 
also vary in how much they interact with one another 
(Pinter-Wollman et al., 2011; Jeanson, 2012; Waters 
and Fewell, 2012) enhancing how far and how quickly 
information, for example about a food resource, flows 
across the interaction network (Pinter-Wollman et al., 
2011; Mersch et al., 2013). 

The collective foraging behavior of harvester ant co-
lonies is regulated through a network of interactions. 
Workers of the harvester ant Pogonomyrmex barbatus 
interact using brief antennal contacts (Gordon, 2010) 
during which they detect task-specific chemical cues 
(Greene and Gordon, 2003, 2007). Interaction rates with 
returning foragers in the nest chamber closest to the nest 
exit provide information about food availability and 
determine the rate of foraging activity (Schafer et al., 
2006; Pinter-Wollman et al., 2011; Greene et al., 2013; 
Pinter-Wollman et al., 2013). On short timescales of 
minutes, interaction networks show a skewed weighted 
degree distribution, in which individual variation in in-
teraction rate (Pinter-Wollman et al., 2011) is due to 
variation in spatial behavior (Pinter-Wollman et al., 
2011; Pinter-Wollman et al., 2013). Networks with 
skewed weighted degree distributions and those with 
many interactions both facilitate widespread transfer of 
information across the entire interaction network (Ban-
sal et al., 2007; Pinter-Wollman et al., 2011). Thus, 
variation among foragers in the rate of interaction may 
influence the regulation of colony foraging behavior 
overall. However, it is not known whether persistence in 
this variation in interaction rate may impact network 
structure and therefore foraging regulation.  

The structure of a social insect colony’s interaction 
network emerges from the walking patterns of the wor-
kers, which are affected by the spatial organization of 

chambers or resources in their nest (Adler and Gordon, 
1992; Gordon et al., 1993; Naug, 2008; Sendova-Franks 
et al., 2010; Pinter-Wollman et al., 2011; Jeanson, 2012; 
Mersch et al., 2013; Pinter-Wollman et al., 2013). When 
ants leave their nest, e.g., to forage or maintain the nest 
mound, they effectively no longer have physical barriers 
that constrain their walking paths. Pheromone trails may 
focus the walking paths of ants outside the nest (Tra-
niello, 1989), but even such spatial guides do not physi-
cally restrain the ants in a certain space, only lead them 
along a preferable path. Thus, outside the nest there are 
effectively no barriers that restrict the walking patterns 
of ants and therefore they encounter each other at a 
lower frequency than inside the nest. Thus, it is possible 
that the effects of persistent individual variation in spa-
tial behavior on network structure will differ in the 
presence or absence of barriers in the environment. 

Here I investigate how persistence in the individual 
variation in spatial behavior among workers of harve-
ster ants affects network structure and function. Using a 
computer simulation, I test the hypothesis that increas-
ing the persistence of individual variation in walking 
patterns increases the skewness of a network’s weighted 
degree distribution and the total number of interactions. 
I further examine whether the relationship between per-
sistence in walking patterns and network structure is 
maintained when changing the spatial setting in which 
interactions occur, i.e., when removing spatial barriers.  

1  Materials and Methods  

To test the effect of persistence in walking patterns 
on the skewness of a network’s weighted degree distri-
bution and its total number of interactions, I constructed 
an agent-based, spatially explicit computer simulation 
(Fig. 1). I tested whether persistence in spatial activity 
would increase or decrease the skewness of the net-
work’s weighted degree distribution and the total num-
ber of interactions when physical boundaries are present 
and when they are absent. The rules and parameters of 
the model were set to simulate the observed individual 
variation and walking trajectories of harvester ants 
(Pinter-Wollman et al., 2011) and a local sensitivity 
analysis of the selected parameters is provided in the 
supplementary material along with the code for the si-
mulations. The simulated ants’ movement was modeled 
as a correlated random walk (Kareiva and Shigesada, 
1983) with constant speed. An ant i moved in a direc-
tion θi,t during time step t. At each time step, the ant’s 
direction was updated to: θi,t+1 = θi,t + dθ where dθ was 
drawn from a normal distribution with an average of 
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zero and a standard deviation of σi as in Adler and 
Gordon (1992). To produce individual variation among 
ants in their turning angles, I varied σi, an ant-specific 
parameter that determines an ant’s walking tortuosity, 
by drawing values of σ from an exponential distribution 
with an average of π/8. Variation among ants in walking 
tortuosity was observed empirically by Pinter-Wollman 
et al (2011). At the beginning of each simulation, each 
ant was assigned a value of σi. To simulate persistence 
in walking patterns I defined τ, a parameter that deter-
mines the frequency at which an ant changes its path 
tortuosity (σi). Every τ time steps, all ants were ran-
domly assigned a new tortuosity parameter σi. So the 
larger the τ, the longer the ants persisted in their walk-
ing pattern. In each simulation there were 100 ants that 
walked according to the above rules for 1000 time steps. 
I ran 100 simulations for each of five τ values: 1 
(change σi every time step), 10, 100, 500 (change σi 
every 10, 100, or 500 time steps), and infinity (imple-
mented as 1001 in this case - no change in σi throughout 
the simulation) (Fig. 1A, B, supplementary movies 1, 2). 
I then constructed the interaction network among the 
simulated ants, with interactions defined as co-localiza-
tion in time and space. An interaction was recorded if 
ants were at a distance of 5 steps from one another dur-
ing a certain time point. If two ants remained interacting 
for longer than one time step, with up to 4 time steps 
separating consecutive interactions, these interactions 
were aggregated and considered as a single interaction 
event (see simulation code in the supplementary materi-
al). To measure the distribution of interactions among 
individuals I used the skewness, a measure of the 
asymmetry of a probability distribution, of the weighted 
degree distribution, i.e., the distribution of the total 
number of interactions each ant experienced (Barrat et 

al., 2004). Networks in which interactions are homoge-
nously distributed among individuals have low skew-
ness. Networks with high heterogeneity among individ-
uals in interaction rate, e.g., with most individuals expe-
riencing few interactions and few interaction hubs ex-
periencing many interactions, have high skewness. I 
compared the skewness of the weighted degree distribu-
tion obtained from the 100 simulations of each of the 
five τ values using a one way ANOVA. To determine 
whether persistence also affected the total number of 
interactions experienced by all simulated ants, I 
summed the number of interactions in each simulation 
and compared results for the 100 simulations of each of 
the five τ-values using a one way ANOVA.  

To simulate the effect of boundaries, the ants were 
placed either in a finite arena with boundaries, or were 
not confined (Fig. 1). In a finite arena of 100 × 100 ant 
lengths, when an ant reached the boundary, if its next 
step would have placed the ant outside the arena, the x or 
y coordinates of that next step (whichever one  would 
have been outside the arena) were automatically modi-
fied to be back at the boundary. This rule effectively 
caused ants that reached the boundary to walk along it 
(Fig. 1A, supplementary movie 1), a behavior observed 
in several ant species (Gordon et al., 1993), including P. 
barbatus (personal observations). To simulate a large, 
infinite arena, I implemented a periodic boundary con-
dition (PBC), i.e. ants that stepped outside a 100 × 100 
ant-length screen, re-appeared at the opposite side (Fig. 
1C, supplementary movie 3), as if they were walking on 
a torus or sphere (Gordon et al., 1993). Thus, effectively 
these ants did not encounter any boundaries, yet they 
did not randomly diffuse away from one another as they 
would have if I had simply increased the size of the 
arena. Finally, to determine the effect of boundaries on 

 

 
 

Fig. 1  Trajectories of simulated ants 
A. Boundaries and high persistence (τ= 1001). B. Boundaries and low persistence (τ= 1). C. No boundaries (PBC) and high persistence (τ= 1001). 
Each ant is depicted in a different color and only 20 ants run for 700 time steps are shown for clarity. 

http://youtu.be/EMePrlRKjv0
http://youtu.be/4KZKtH7rhcY
http://youtu.be/WhuyIvYUYLg
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the location of the interactions I examined for each si-
mulation run the ratio between the number of interac-
tions that occurred along the boundary, or edge of the 
screen, and the number of interactions that occurred in 
the remainder of the arena. The region near the boun-
dary or edge of the screen was defined as the area along 
the boundary or screen edge that is the width of the dis-
tance two ants had to be from one another to be consi-
dered interacting, which was 5 ant lengths. The ratio 
between interactions at the edge and the remainder of 
the arena from the 100 simulations of each of the five τ 
values were compared using a one way ANOVA. 

All simulations and analyses were conducted in R 
version 2.15.2. The code for the simulation can be 
found in the electronic supplementary material. 

2  Results  

When confined by boundaries, an increase in walk-
ing pattern persistence led to an increase in the skewe-
ness of the weighted degree distribution of the interac-
tion network, i.e., an increase in the variability among 
individuals in their interactions (ANOVA: F4,495 = 42, P 

< 0.0001, Fig. 2). Furthermore, as persistence increased, 
so did the overall number of interactions (ANOVA: 
F4,495 = 142, P < 0.0001, Fig. 3A). The numerical results 
of the simulations with high persistence are similar to 
the results from the empirical networks that were re-
ported by Pinter-Wollman et al. (2011) and were used to 
parameterize the simulation.  

However, when there were no effective boundaries 
(i.e., PBC), persistent behavior did not affect network 
structure or total number of interactions. The weighted 
degree distribution did not change as persistence in-
creased (ANOVA: F4,495 = 1.6, P = 0.18, Fig. 4) and 
neither did the overall number of interactions (ANOVA: 
F4,495 = 0.2, P = 0.94, Fig. 3B). 

As persistence increased, the proportion of interac-
tions along the arena edges increased when boundaries 
were present but not when they were effectively absent 
(PBC). In the simulations with arena boundaries, the 
ratio between interactions near the arena boundary and 
the remainder of the arena changed with persistence 
(ANOVA: F4,495 = 409, P < 0.0001, Fig. 5A). However, 
when barriers were absent, persistence in walking pat- 

 

 
 

Fig. 2  When boundaries were present, as persistence increased, weighted degree distribution became more skewed 
A. Boxplots of the skewness of 100 simulations for each persistence level. In all figures with boxplots the boxes indicate the lower and upper quar-
tiles, horizontal lines within boxes indicate the median, whiskers extend to the 1.5 interquartile range from the box, and points indicate outliers. B 
–F. The weighted degree distribution of all simulations of each persistence level (tau). 
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Fig. 3  Total number of interactions as a function of persistence (A) when boundaries were present and, (B) when bounda-
ries were absent (PBC) 

 

 
 
Fig. 4  When boundaries were effectively absent (PBC) there was no relationship between persistence and weighted degree 
distribution 
A. Boxplots of the skewness of 100 simulations for each persistence level. B–F. The weighted degree distribution of all simulations of each persis-

tence level (tau). 
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Fig. 5  Ratio between the number of interactions near the edge of the arena and elsewhere in the arena (A) when bounda-
ries were present and, (B) when boundaries were effectively absent (PBC) 
Different letters indicate statistically significant differences using a post hoc Tukey test. 
 

terns did not affect the ratio between the number of in-
teractions along the screen edge and the number of in-
teractions elsewhere in the arena (ANOVA: F4,495 = 0.7, 
P =0.59, Fig. 5B). 

3  Discussion 

The model presented here shows that persistence in 
the spatial behavior of ants may promote interaction 
networks with a skewed weighted degree distribution 
and many interactions. This relationship between the 
persistence in spatial behavior and network structure 
holds if ant movements are confined by boundaries but 
not if movements are not confined, i.e., in PBC. Skewed 
weighted degree distribution and increased interaction 
rate both facilitate the speed of information flow among 
ants (Pinter-Wollman et al., 2011). Thus, persistent spa-
tial behavior may facilitate information flow inside the 
nest but not outside. This difference in the effect of per-
sistence in walking pattern on network structure under 
different environmental conditions may explain how 
social insect colonies regulate their collective behavior 
to fit the various ecological constraints they face. Out-
side the nest, there are many more risks, such as preda-
tion (Munger, 1984) and desiccation (Lighton and 
Feener, 1989), than inside the nest. The organization of 
a colony’s workforce takes these differences into ac-
count by allocating younger workers, who have a long 
life ahead of them, to brood care inside the nest and 
older workers, that are near the end of their lives, to  
handling the refuse pile (Gordon et al., 2005). Interac-

tion networks with skewed weighted degree distribu-
tions rely on few individuals with many interactions, i.e. 
hubs, to transmit information rapidly. If such hub indi-
viduals are lost, the flow of information on the network 
is greatly affected because the social structure is broken 
at an important link (Lusseau and Newman, 2004). Thus, 
having an interaction network that relies on one or few 
key individuals is not robust to risky conditions such as 
those outside the nest. However, in the safety of the nest, 
where the risk of losing workers is low, communication 
can rely on networks that enhance the speed of informa-
tion flow, despite their low structural robustness. My 
simulations show that maintaining persistent behavioral 
variation among workers, i.e. having colonies com-
prised of workers with various personalities, provides 
the benefits of rapid information flow within the nest, 
without paying the potential costs of network break-
down outside the nest. Thus alleviating the potential 
constraints that emerge from animal personalities carry-
ing over to inappropriate situations that have been sug-
gested for other animal systems (Sih et al., 2004).  

Another tradeoff that may be resolved by the effects 
of behavioral persistence on network structure is the 
tradeoff between information flow and the spread of 
disease on a network: when information flow is rapid, 
so is disease transmission. Workers in a colony perform 
various tasks, which are often spatially segregated 
(Sendova-Franks and Franks, 1995; Jandt and Dornhaus, 
2009; Mersch et al., 2013). Thus, interactions among 
workers of different tasks might be less frequent than 
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interactions among workers of the same task, creating a 
modular interaction network (Fewell, 2003). Models of 
disease transmission on modular networks of social 
insects show a decrease in the rate of disease transmis-
sion as network modularity increases (Naug and Cama-
zine, 2002). Indeed, in honey bees, segregation of inte-
ractions among age groups protects the youngest bees 
from contracting a disease brought into the nest by fo-
ragers (Feigenbaum and Naug, 2010). In contrast, when 
a starved colony of T. albipennis receives food, mixing 
among tasks increases substantially, facilitating rapid 
food distribution throughout the colony (Sendova-    
Franks et al., 2010). Furthermore, in the social wasp 
Ropalidia marginata, the degree distribution of the in-
teraction network becomes more skewed as the colony 
increases in size (Naug, 2009), thus as a colony grows, 
its interaction network changes to facilitate faster in-
formation flow to all its constituents. Such complexity 
in a colony’s interaction network allows it to balance 
fast information flow within a task, or when food is 
distributed, with slow disease spread among tasks. The 
model I presented suggests that frequent task switching, 
i.e. low behavioral persistence, could be another poten-
tial way to balance rapid information flow and disease 
transmission: it is possible that as workers switch tasks, 
they maintain their position within the interaction net-
work of their new task, but because of factors (spatial or 
temporal) that separate task groups, this persistence no 
longer affects interactions with ants from its prior task. 
Examining the interplay between interactions among 
tasks and within tasks will further elucidate how a co-
lony balances the tradeoffs between rapid information 
dissemination and disease transmission. 

The difference in the relationship between persistent 

behavior and network structure when boundaries are 
present and when they are effectively absent (PBC) may 
be explained by the location of interactions. When 
boundaries were present, the proportion of interactions 
along the boundary increased with persistence (Fig. 5A). 
Thus, when persistence in walking patterns was high, 
the few individuals with trajectories of low tortuosity, 
who are the ones that experience the most interactions 
(Pinter-Wollman et al., 2011), tended to remain along 
the arena boundary, once they reached it (Fig. 1A), and 
interacted with one another frequently along the edge 
(Fig. 6A), skewing the distribution of interactions among 
individuals. When persistence was low, path tortuosity 
changed more frequently and individuals did not neces-
sarily remain at the boundary (Fig. 1B, 6B). When 
boundaries were effectively absent (PBC), there was no 
spatial ‘sink’ for ants with low path tortuosity (Fig. 1C) 
and so their likelihood of interacting with others did not 
change with persistence (Fig. 5B, 6C). It has been 
shown empirically that certain ant species tend to walk 
along arena edges to increase their interaction rate, and 
even when placed on a spherical arena, with no bounda-
ries, certain ants will aggregate at particular locations 
on the sphere to increase their interaction rate (Gordon 
et al., 1993). Thus, it seems as though ants can regulate 
their spatial behavior to enhance the effect of persistent 
individual variation on the structure of the interaction 
network. 

Because social insects vary in how their nests are 
structured and in their ecological needs, species may 
vary in how persistent behavioral variation influences 
network structure. In small lab nest chambers, P. bar-
batus ants vary in interaction rate over short periods of 
five minutes (Pinter-Wollman et al., 2011). Workers of  

 

 
 

Fig. 6  Heatmap of interactions of three simulation runs with 100 ants each for 1,000 time points 
A. with boundaries and high persistence (τ = 1,001). B. with boundaries and low persistence (τ = 1). C. When boundaries were effectively absent 
(PBC) and high persistence (τ = 1,001). Red colors indicate many interactions and blue colors indicate few interactions. The white empty squares 
are drawn 5 ant lengths from the boundary or edge of the screen to indicate which interactions were considered along the edge (outside the square) 
and which interactions were considered to be in the remainder of the arena (inside the white square). 
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the ant Odontomachus hastatus exhibit both individual 
variation and persistence in interaction rate over a three 
week period (Jeanson, 2012). In contrast, workers of the 
ant Temnothorax rugatulus do not exhibit persistence in 
interaction rate (Blonder et al., 2012). Temnothorax ants 
form small colonies of 30‒200 workers that live in 
small cavities (Franks et al., 1992) in which all individ-
uals might be able to interact with one another fre-
quently, reducing the need for an interaction network 
structure that facilitates fast information flow. However, 
P. barbatus ants form large colonies of up to 10,000 
workers that live in complex nests (Tschinkel, 2004; 
Gordon, 2010), in which the likelihood is low that any 
worker will interact with most others. Thus, having in-
teraction networks in which individuals persist in their 
behavior may facilitate the speed of information flow in 
such large colonies. 

Persistent individual variation in spatial behavior 
may be caused by many factors. For example, tempera-
ture (Azcarate et al., 2007), gene expression (Whitfield 
et al., 2003; Ingram et al., 2005), age (Seeley, 1982), 
and the task a worker performs, which determines where 
the worker is located within the nest (Sendova-Franks 
and Franks, 1995; Jandt and Dornhaus, 2009) all influ-
ence a worker’s spatial behavior. Further studies are nee-
ded to determine what produces individual differences 
among workers in spatial activity to better understand 
the temporal scale on which such variation persists and 
therefore the magnitude of its effect on the structure of 
the interaction network among workers in a colony. 
Understanding how the behavior of each individual 
agent in a network changes, and how this alters network 
function, can explain how complex biological systems 
regulate collective behavior in various environments. 
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Electronic Suplumentry Material 
Code of the simulation as it was run in the software R version 2.15.2 
 
################################################################### 
# load libraries  
library('igraph') 
library('MASS') 
library('moments') 
 
# clear workspace 
rm(list=ls()) # clean workspace 
graphics.off() # close all figures 
 

################################################################## 
 

# set model parameters 
 

n=100 # number of ants  
iter = 1000 # number of time steps 
thresh=5 # distance two ants need to be during a certain time step to be considered interacting 
sims=100 # number of simulation iterations  
Tau=c(1,10,100,500,1001) # Tau values (1,10,100,500,1001) 
geomtype=c(1,2) # what happens at the boundary? 1=stay at boundary, 2=appear on other side of screen 

(walk on ball) 
anglescale = pi/8 # the average of the exponential distribution that determines the standard 

deviation of the normal distribution from which the change in turning angle is drawn at each time 
step  

bndsiz=100 # the size of a side of the square arena 
 

# initiate arrays for storing simulation results 
skews=array(NA, dim=c(sims,length(Tau), length(geomtype))) 
WDdists=array(NA, dim=c(sims,n,length(Tau),length(geomtype))) 
prop_edge_int=array(NA, dim=c(sims,length(Tau),length(geomtype))) 
 
for (h in 1:length(geomtype)){ 
  

bnd = c(0, bndsiz) # the size of the arena 
  

 for (k in 1:length(Tau)){ 
   
  for (s in 1:sims){ 
    

AntXY = matrix(runif(n*2, min=bndsiz/2-50, max=bndsiz/2+50),n,2) # in-
itialize random ant position so that they start in a 100*100 square in the middle 
of the arena (if want to change their spread - need to change the 50) 

   AntV = matrix(1,n,1) # current Ant velocity (Vx,Vy) 
   AntTeta = runif(n,0,2*pi) # initialize first turning angle 
   Tortuosity = rexp(n, anglescale) # trajectory persistence  
    

# initiate variables to fill in when simulation runs: 
   AntHistoryX = matrix(NA, nrow=iter,ncol=n)  
   AntHistoryY = matrix(NA, nrow=iter,ncol=n)  

 
# create a data frame to fill in association as the simulation runs     (will 

remove this first row later): 
   association=data.frame(t(c(x=1,y=1,t=1,ith=1,jth=1)))   
    
  ## simulation:  
    
   for(i in 1:iter){ 
    if ((i %% Tau[k] )==0){ 
     Tortuosity = rexp(n, anglescale) 
    } 
     

# random change in direction dVx,dVy    
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    dTeta = rnorm(n,0,Tortuosity) 
    AntTeta = AntTeta+dTeta;  
     
    AntXY[,1] = AntXY[,1]+AntV*cos(AntTeta) 
    AntXY[,2] = AntXY[,2]+AntV*sin(AntTeta) 
     
     
   # deal with boundary: 

 
# scenario 1: place ants that leave the arena at the boundary 

  
     
    if(geomtype[h]==1){ 
     for (j in 1:n){ 
       
      if (AntXY[j,1]<min(bnd)){AntXY[j,1]=min(bnd)} 
      if (AntXY[j,1]>max(bnd)){AntXY[j,1]=max(bnd)} 
      if (AntXY[j,2]<min(bnd)){AntXY[j,2]=min(bnd)} 
      if (AntXY[j,2]>max(bnd)){AntXY[j,2]=max(bnd)} 
     } 
    } 
     

# Scenario 2: appear on other side of screen (walk on ball) 
    if(geomtype[h]==2){ 
     for (j in 1:n){ 
       
      if (AntXY[j,1]<min(bnd)){AntXY[j,1]=max(bnd)} 
      if (AntXY[j,1]>max(bnd)){AntXY[j,1]=min(bnd)} 
      if (AntXY[j,2]<min(bnd)){AntXY[j,2]=max(bnd)} 
      if (AntXY[j,2]>max(bnd)){AntXY[j,2]=min(bnd)} 
     } 
    } 
     
     
    # store location information for each time step 
    AntHistoryX[i,] = t(AntXY[,1]) 
    AntHistoryY[i,] = t(AntXY[,2])  
     

# get the interactions that happened during this time point and save 
in a variable. (information about the interaction to keep: XYTij) 

    distance=dist(AntXY) 
    ijt=which(distance<thresh, arr.ind=TRUE) 
    if(length(ijt)>0){ 

ij=which(as.matrix(distance)==distance[ijt], arr.ind=TRUE) 
 

     ## save in the dataframe of interactions: 
     ith=ij[,1] 
     jth=ij[,2] 
     xs=cbind(AntXY[ij[,1],1],AntXY[ij[,2],1]) 
     x=apply(xs,1,mean) 
     ys=cbind(AntXY[ij[,1],2],AntXY[ij[,2],2]) 
     y=apply(ys,1,mean) 
     t=i 
     xytij=cbind(x,y,t,ith,jth) 

          
if(length(xytij)>1){association=rbind(association,xytij)} 

      
    } 
   } 
    
  # remove the first row I inserted when creating the association data frame: 
   association=association[-1,]   
   association=association[order(association$ith,association$jth,association$t),] 
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 association_agg=association 
    
# aggregate interactions so that as long as two ants are interacting it counts as only one interaction 

and not as many interactions (for each time frame), to be consistent with the analysis of the empirical 
data in Pinter-Wollman et al 2011: 

   cnt=1 
   while(cnt<dim(association_agg)[1]){ 
    current_row=association_agg[cnt,] 
    next_row=association_agg[cnt+1,] 
    if(current_row$ith==next_row$ith& 
      current_row$jth==next_row$jth& 
      next_row$t-current_row$t<5){ 
     association_agg=association_agg[-cnt,] 
    }else{ 
     cnt=cnt+1 
    } 
   } 
    
   ## set up network and get weighted degree (strength) data 
   for.net=as.matrix(association_agg[,c(4,5)]) 
   net=graph.edgelist(for.net,directed=FALSE) 
   for_WD=get.adjacency(net)  
    
   # remove node '0' that was automatically added by igraph  
   if(dim(for_WD)[1]>n){for_WD=for_WD[-1,-1]}       
    
   # calculate strength and the skewness of its distribution 
   WD=apply(for_WD,2,sum )  
    

if(length(WD)<n){WD=c(WD,rep(0,(n-length(WD))))} # add 0 to the WD for ants 
that did not interact with anyone else 

    
   skns=skewness(WD) 
    
 
   # store for further analysis: 
   skews[s,k,h]=skns 
   WDdists[s,,k,h]=WD 
 

# calculate the ratio between interactions along the boundaries of the arena and 
the middle of the arena  

   edge=0 
   inside=0 
   for (i in 1:dim(association)[1]){ 

if(association$x[i]>(bndsiz-thresh)|association$x[i]<thresh|asso
ciation$y[i]>(bndsiz-thresh)|association$y[i]<thresh)  # if an in-
teraction happened within the threshold distance that defines an 
interaction from the boundary of the arena 

    {edge=edge+1} 
    else 
    {inside=inside+1} 
   }   
    
   # normalize number of interactions by the area in which they happen 
   edge_area=(bndsiz*thresh)*2+(bndsiz-2*thresh)*thresh*2 
   edge_norm=edge/edge_area 
   inside_norm=inside/(bndsiz^2-edge_area) 
    
   # store for further analysis 
   prop_edge_int[s,k,h]=edge_norm/inside_norm 
     
      
  } 
 } 
} 
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