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H I G H L I G H T S

� Collective foraging of ant colonies is regulated in response to environmental perturbations.
� We use a compartmental modeling approach to study the regulation of collective foraging.
� Our model can undergo a forward or backward bifurcation depending on model parameters.
� We validate the model with experimental data from harvester ants.
� Our model shows how local interactions can achieve an emergent and robust regulatory system.
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a b s t r a c t

Collective behaviors in social insect societies often emerge from simple local rules. However, little is
known about how these behaviors are dynamically regulated in response to environmental changes.
Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to
regulate collective foraging activity in response to their environment. We propose a set of differential
equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside
the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as
baseline number of foragers, interactions among foragers, food discovery rates, successful forager return
rates, and foraging duration might influence collective foraging dynamics, while maintaining functional
robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical)
bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case,
foraging activity persists when the average number of recruits per successful returning forager is larger
than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and
fate of foraging activity depends on the distribution of the foraging workforce among the model's
compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex
barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions
can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The regulation of collective foraging by social insect colonies
emerges from local rules followed by individual workers (Detrain et
al., 1999). Because social insects live in a dynamic environment, it is
important to understand how these individual-based local rules
allow the colony to respond to perturbations inside and outside
the nest (Adler and Gordon, 1992; Beshers and Fewell, 2001; Gordon,
2002). Collective foraging of social insects has been extensively

studied in many systems, revealing similarities in the dynamics of
its regulation across species (e.g., bees, Fewell and Winston, 1992;
Bonabeau et al., 1997; ants, Gordon, 2002; Dornhaus and Chittka,
2004, etc.). For example, ant species exhibit a variety of foraging
strategies that employ a combination of direct and indirect social
cues (Höldobler and Wilson, 1990). Forager recruitment strategies
range from leader-based recruitment in which successful foragers
guide recruits directly to the food source (i.e., tandem running,
Franks and Richardson, 2006; Fernandez and Deneubourg, 2011) to
self-organizing pheromone trail networks that allow naive recruits to
locate and exploit profitable food sources (Traniello, 1989).

Mathematical models have been instrumental in uncovering
fundamental mechanisms that underlie the foraging dynamics of
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ant colonies in various environmental conditions (Bonabeau et al.,
1997; Collignon and Deneubourg, 2012; Sumpter and Pratt, 2003;
Deneubourg et al., 1989). Although several models have addressed
the dynamics of resource exploitation using pheromone trails
(e.g., Bonabeau et al., 1997; Collignon and Deneubourg, 2012;
Deneubourg et al., 1989; Tabone et al., 2010) few have considered
systems without such spatial cues. For example, Dussutour and
Nicolis (2013) found that the reliability of collective foraging
decisions in a dynamic resource environment is regulated using
both pheromone trails and direct interactions. Their analytical and
empirical results suggest that interaction based recruitment pro-
vides the colony with greater flexibility than pheromone trails
when obtaining ephemeral food sources. Here we examine a
system in which interactions are the primary mode of commu-
nication in an environment with a relatively stable food source.

Colonies of the seed harvester ant Pogonomyrmex barbatus
regulate their foraging activity in response to environmental con-
ditions. Harvester ants obtain most of their water by metabolizing
fats stored in the seeds they eat (Lighton and Feener, 1989).
However, the longer a worker forages in the hot desert sun, the
less likely it is to return to the nest with food (Lighton and Feener,
1989). Therefore, colonies must constantly balance desiccation
costs with the expected benefits of finding food (Gordon et al.,
2013). In addition, depredation of active foragers by horned lizards
is another ecological pressure that colonies face (Munger, 1984).
Previous studies suggest that the rate at which foraging activity
resumes after a predator attack is related to the duration of the
predation event (Gordon, 2002; Pinter-Wollman et al., 2013).

Foraging regulation is mediated by brief interactions among
workers (Gordon, 2002, 2010; Pinter-Wollman et al., 2013; Gordon
et al., 2008; Greene and Gordon, 2007). Foragers leave the nest in
search of seeds after reaching a threshold number of antennal
interactions with successful returning foragers in the area just inside
the nest entrance, called the vestibule (Pinter-Wollman et al., 2013;
Greene et al., 2013). Because foragers continue their search for food
until a seed item is found, forager return rates may serve as a reliable
proxy for external conditions such as seed availability, humidity, etc.
(Beverly et al., 2009). Antennal contacts inside the nest are used to
sense cuticular hydrocarbons which provide information about an
ant's task (Greene and Gordon, 2007; Gordon, 1998; Wagner et al.,
1998). Furthermore, when encountering the combined odor of
foragers and seeds at a particular rate, an inactive forager will leave
the nest and look for food (Pinter-Wollman et al., 2013; Greene et al.,
2013). Thus, interactions among workers in the vestibule are funda-
mental for regulating foraging activity in response to environmental
perturbations. Indeed, recent studies by Pinter-Wollman et al. (2013)
and Gordon et al. (2008) demonstrate that colonies reliably adjust
their foraging intensity relative to changes in forager return rates
over the course of just a few minutes.

To date, only a few models have attempted to investigate the
effect of physical interactions on the dynamics of collective activity
(Dussutour and Nicolis, 2013; Pacala et al., 1996; Nicolis et al.,
2005). A notable contribution along these lines was a recent work
by Prabhakar et al. (2012), which explored the regulation of
foraging activity in P. barbatus using a simple stochastic algorithm.
Approximating the inter-arrival times of successive returning
foragers as a Poisson process, they generated a simple linear
relation between the rates of returning foragers and outgoing
foragers by assuming that each returning forager increased the
rate of outgoing foragers by a fixed amount. Although their model
captured many aspects of the data, including previously reported
correlations between numbers of returning and outgoing foragers
during periods of high food availability (Pinter-Wollman et al.,
2013; Schafer et al., 2006; Gordon et al., 2011), the authors
conceded some limitations. In short, their model could neither
account for the non-linear patterns of forager interaction, nor

mechanistically define parameters, which influence the rate of
returning foragers and their effects on inactive foragers in the nest.

In this paper, we develop a simple compartmental model based on
the foraging behavior of harvester ant colonies. Our model captures
the mechanistic regulation of collective foraging activity by defining
the interactions among three categories of foraging ants: (i) availa-
ble foragers at the nest, (ii) active foragers leaving the nest, and
(iii) successful returning foragers (Pinter-Wollman et al., 2013). We
then analyze the sensitivity of the model to changes in its parameters
to understand how colony-specific properties, such as interaction rates
among workers, and environmental parameters, such as food avail-
ability, can influence the robustness of foraging activity. Furthermore,
we validate our model by comparing its dynamics under simulated
perturbations to empirical observations of a forager removal experi-
ment described in Pinter-Wollman et al. (2013).

The rest of the paper is structured as follows: in Section 2, we
develop the foraging model with general parameters. In Section 3,
we summarize the complete mathematical analysis of its dynamics
and provide relevant biological implications. In Section 4, we vali-
date the model by comparing the results of simulated perturbations
with the empirical findings of Pinter-Wollman et al. (2013), and
present results on the sensitivity analysis. In Section 5, we discuss
our results and include some closing remarks. The detailed proofs of
our main analytical results are presented in Section 6.

2. Model derivation

We develop a deterministic system of nonlinear differential
equations to describe the regulation of foraging activity in har-
vester ant colonies (Fig. 1). The model's state variables are defined
as follows: let NðtÞ ¼ AðtÞþFðtÞþRðtÞ be the total forager workforce
of a focal colony at time t, where A(t) denotes the number of
available foragers inside the nest's vestibule, F(t) denotes the
number of outgoing (active) foragers, and R(t) denotes the number
of returning foragers. The model's structure follows from the state-
based framework outlined by Sumpter and Pratt (2003) along with
some formalistic assumptions. Most importantly, we assume that
the total workforce is large to avoid the effects of stochasticity in
small populations. In light of this caveat, we focus our model on
the minute to minute dynamics of a mature colony which can have
up to several thousand foragers over the course of hourly activity
(Gordon, 1991; Gordon and Kulig, 1996). Furthermore, we make
the following assumptions about its state dynamics:

1. Available foragers A: The numbers of available foragers A(t) is
determined by the following four flow rates.
The inflow rate consists of two components:

  

Fig. 1. Flow diagram of the proposed foraging model (4). The dynamics of the
rectangular components (i.e., Inner Nest and Resource S) are assumed to be
independent of the colony's foraging dynamics over the timescale of our model
(i.e., minutes). Parameters are defined in Table 1.
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(a) The arrival rate, ΛðtÞ ¼ k1 which describes the movement of
potential foragers from the inner nest to the vestibule. We
assume that this rate is constant in our model. In nature, k1
might vary over the course of the day or throughout the
year depending on properties such as the number of
workers allocated to the foraging task, colony age, etc.
(Gordon, 1991, 1996).

(b) The forager turnover rate, Υ ðtÞ ¼ γ which describes the rate
at which returning foragers become re-available for recruit-
ment. This rate will be influenced by the distance between
the resource site and the nest, searching and handling
times, as well as the total amount of time spent inside the
nest after a successful trip (e.g., depositing seeds). We
aggregate these effects into a single constant (1=γ), which
describes the average time spent as a returning forager, and
thus also affects the rate at which foragers are recruited as
detailed below.

The outflow rate consists of two components:
(a) The activation ðrecruitmentÞ rate of available foragers,

Ψ ðA;RÞ ¼ βAR which describes the rate of increase in the
number of active foragers. This formulation assumes mass
action incidence and is supported by the empirical obser-
vations of Pinter-Wollman et al. (2013) and Greene and
Gordon (2007). More specifically, we assume that (i) an
available forager contacts only the fraction (ρ) of returning
foragers that are inside the vestibule at an average rate of c
interactions per unit time, (ii) interactions are independent
of one another and are equally likely to occur with any
available forager in the vestibule, and (iii) each interaction
has a constant probability (μ) of activation. Hence, the
“effective interaction rate” (β) is the product of the number
of interactions per unit time made by a returning forager
that is inside the vestibule and the probability that an
interaction activates a new forager: β¼ cρμ.

(b) The retirementrate of available foragers from the vestibule
into the inner nest, χðA;RÞ ¼ k2ðA=ð1þRÞÞ which reflects the
behavior of available foragers in response to changes in
forager return rate reported in Pinter-Wollman et al. (2013).
When forager return rates are low, (i.e., R is small) the
number of available foragers is large relative to the average
number of returning foragers inside the vestibule. As such,
available foragers are more likely to retire to the inner nest
(Pinter-Wollman et al., 2013). This occurs at a maximum
rate k2A (when there are no returning foragers: R¼0). On
the other hand, when forager return rates are high (i.e., R is
large) then available foragers are less likely to retire into
the inner nest.

Based on these assumptions, the rate equation for the number
of available foragers is given by

A0 ¼ k1|{z}
arrive

þ γR|{z}
turnover

� βAR|ffl{zffl}
activate

�k2
A

1þR|fflfflfflffl{zfflfflfflffl}
retire

ð1Þ

2. Active foragers F: The number of active foragers F(t) is deter-
mined by the recruitment rate βAR; the rate of resource
discovery, αðSÞF; and the loss (or death) rate df F while search-
ing for the resource (e.g. due to predatory activity near foraging
trails Munger, 1984). The rate αðSÞF at which active foragers F
become returning foragers R is influenced by the abundance of
available seed items, S. For mature harvester ant colonies, the
effective seed densities in the nest's home range are typically
orders of magnitude greater than the maximum number of
foragers (Schafer et al., 2006). Thus, seed abundance should be

generally (approximately) independent of a colony's foraging
intensity especially on the timescale of hourly activity. Hence,
we will assume that the per-capita resource discovery rate is
constant: αðSÞ ¼ α. We also assume foragers continue to search
until they discover a seed item as is typical for harvester ants
(Beverly et al., 2009). Based on these ecological assumptions,
the rate equation for the number of active foragers is given by

F 0 ¼ βAR|ffl{zffl}
activate

� αF|{z}
discover food

� df F|{z}
dead=lost

ð2Þ

3. Returning foragers R: The number of returning foragers R(t) is
determined by the rate at which active foragers discover food
items, αF; the rate at which foragers return to the nest and
become re-available for recruitment γR; as well as the rate of
predation and/or loss while en route to the nest drR. Based on
these assumptions, the rate equation for the number of
returning foragers is given by

R0 ¼ αF|{z}
discover food

� γR|{z}
turnover

� drR|{z}
dead=lost

ð3Þ

Thus, the collective dynamics and regulation of foraging in
harvester ants may be represented by the following system,
hereafter referred to as model (4):

A0 ¼ k1�βAR�k2
A

1þR
þγR

F 0 ¼ βAR�ðαþdf ÞF
R0 ¼ αF�ðγþdrÞR: ð4Þ

3. Mathematical analysis

In this section, we give a complete mathematical description of
model (4) which includes a bifurcation analysis, that reveals the
biological conditions under which the colony can reliably forage at
stable levels. We uncover a range of parameters within which our
model exhibits bistability (i.e., colonies may either forage or not) and
outline how the relationship among the various parameters influ-
ences this outcome. We begin by establishing the basic dynamical
properties of model (4), including specification of equilibria and their
stability conditions (Theorems 3.1 and 3.2). We then summarize its
global behavior in terms of possible bifurcations (Corollary 3.1), and
discuss their relevant biological implications.

Theorem 3.1 (Compact attractor). The foraging model (4) is posi-
tively invariant in R3

þ and every trajectory starting in R3
þ is attracted

to the following compact set C:

C ¼ ðA; F;RÞAR3
þ :

k1
maxfk2; df ;drg

rNr
k1þ

k21
4dr

minfk2; df ; drg

8>>><
>>>:

9>>>=
>>>; ð5Þ

where N¼ AþFþR.

Notes: Theorem 3.1 implies that model (4) is well-defined (i.e.,
biologically plausible) because the total number of foragers (N) is
bounded as observed in nature (Gordon and Kulig, 1996), and
all compartments remain nonnegative for nonnegative initial
conditions. In addition, the number of available foragers, A, is
always non-zero if the worker arrival rate (k1) is positive. See
Section 6 for a detailed proof.
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3.1. Equilibria and their stability

An equilibrium of model (4) should satisfy the following
equations:

R0 ¼ αF�ðγþdrÞR¼ 03F ¼ γþdr
α

R

F 0 ¼ βAR�ðαþdf ÞF ¼ 03A¼ ðαþdf ÞF
βR

¼
ðαþdf Þ

γþdr
α

R

βR
¼ ðαþdf ÞðγþdrÞ

αβ

N0 ¼ k1�k2
A

1þR
�df F�drR¼ 03k1�k2

A
1þR

�df ðγþdrÞ
α

R�drR¼ 0:

ð6Þ

where N0 ¼ A0 þF 0 þR0. Thus, we have the following two cases:

1. When F ¼ R¼ 0, model (4) has a unique non-foraging equili-
brium: E0 ¼ ðAn

0;0;0Þ ¼ ðk1=k2;0;0Þ. This equilibrium always
exists. Note that An

0 ¼ k1=k2 defines a baseline number of avail-
able foragers in the vestibule in the absence of returning
foragers.

2. When Fa0;Ra0, model (4) has at most two foraging equili-
bria:

Ei ¼ ðAn

f ; F
n

i ;R
n

i Þ ¼ An

f ;
γþdr
α

Rn

i ;R
n

i

� �
i¼ 1;2

where

An

f ¼
ðαþdf ÞðγþdrÞ

αβ
Z
γ
β
) βAn

f �γ40 ð7Þ

and Rn

i are the roots of the equation:

ϕðRnÞ ¼ ½k1�ðβAn

f �γÞRn�ð1þRnÞ ¼ k2A
n

f : ð8Þ
To see this, note that an interior foraging equilibrium necessa-
rily satisfies

N0 ¼ A0 þF 0 þR0 ¼ k1�k2
An

f

1þRn
�df ðγþdrÞ

α
Rn�drR

n

¼ ½k1�ðβAn

f �γÞR�ð1þRÞ�k2A
n

f

1þRn
¼ϕðRnÞ�k2A

n

f

1þRn
¼ 0

The explicit forms of Rn

i are solved from the equation
ϕðRnÞ ¼ k2A

n

f :

Rn

1;2 ¼
k1

2ðβAn

f �γÞþ
1
2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2ðβAn

f �γÞ�
1
2

 !2

þk1�k2A
n

f

βAn

f �γ

vuut ;

Rn

1oRn

2: ð9Þ

To continue our analysis, we make the following observations
and define quantities which largely determine the dynamics of
Model (4):

1. First, notice that the equation ϕðRÞ ¼ k1�ðβAn

f �γÞR
h i

ð1þRÞ has
a unique maximum ϕmax at its critical point:

Rc ¼
γ�βAn

f þk1
2ðβAn

f �γÞ ¼ αðk1�drÞ�df ðγþdrÞ
2½αdrþdf ðγþdrÞ�

: ð10Þ

Mathematically, ϕðRÞ relates the net rate of change of

Table 1
Definition of parameters used in model (4). Sampling ranges for parameter estimation were compiled (or approximated) from cited sources. Default values were used for
model simulations, and sensitivity analysis in Section 4.

Parameter Description Range Default Source

k1 Arrival rate (ants s�1) (0, 5) 0.5 Pinter-Wollman et al. (2013)
k2 Retirement rate (ants s�1) (0, 5) 0.2 Pinter-Wollman et al. (2013)
β Effective interaction rate (ants s�1) (0, 2) 0.1 Pinter-Wollman et al. (2013)
γ Forager turnover rate (s�1) (0, 5) 0.03 Gordon (2002), Pinter-Wollman et al. (2013), Gordon and Kulig (1996)
α Resource discovery rate (seeds s�1) (0, 1) 0.04 Schafer et al. (2006), Pol et al. (2011), Johnson (1991)
df Loss rate: outgoing foragers (s�1) (0, 1) 0.005 de Vita (1979)
dr Loss rate: returning foragers (s�1) (0, 1) 0.025 de Vita (1979)

Fig. 2. Schematic nullclines of model (4). Biologically feasible (i.e. positive) equilibria occur at intersections between ϕðRÞ and the dashed horizontal lines (ϕi ¼ k2A
n

f ; i¼ 1;2)
where ϕiok1. (a) If Rco0, model (4) may have a unique foraging equilibrium (ϕ1). (b) If Rc40, model (4) may have a pair of foraging equilibria (ϕ1;2). Equilibria are classified
as attractors (blue), saddles (green) or repellers (black). There are no positive equilibria on the line ϕ0. (a) Rco0 (i.e., R0=RAo1): only E0 or (E0 & E2). (b) Rc40 (i.e.,
R0=RA41): only E0 or (Ei ; i¼ 0;2) or (Ei ; i¼ 0;1;2). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
article.)
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non-retiring (hence, available) foragers with the number of
returning foragers, which represents the net average rate of
forager availability. It accounts for the expected increase in
forager availability, due to decreasing retirement rates of
available foragers, as the number of returning foragers
increases (see Eq. (1)). Consequently, Rc represents the
critical number of returning foragers above which the expected
reduction in forager retirement rates is insufficient to increase
the net average rate of forager availability (Fig. 2(b)). Thus,
we define

ϕmax ¼ϕðRcÞ ¼
ðβAn

f �γþk1Þ2
4ðβAn

f �γÞ ¼ αðk1�drÞ�df ðγþdrÞ
� �2

4α½αdrþdf ðγþdrÞ�
Zϕð0Þ ¼ k1 ð11Þ

as the maximum possible rate of forager availability.
2. We define R0 as the forager generation number, where

R0 ¼
An

0

An

f

¼ k1=k2
ðαþdf ÞðγþdrÞ

αβ

¼ k1
k2

αβ
ðαþdf ÞðγþdrÞ

: ð12Þ

R0 represents the average number of recruits generated by a
single returning forager when foraging activity is near the non-
foraging equilibrium state. It is the product of the expected
production rates of active foragers (via recruitment) and
returning foragers (via resource discovery) over the typical
duration of a foraging trip:

R0 ¼
An

0

An

f
¼ β

k1
k2|{z}

Baseline recruitment rate

� α|{z}
Resource discovery rate

� 1
ðαþdf ÞðγþdrÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Mean foraging duration

ð13Þ

Thus, R0 is dimensionless, confirming its interpretation as
a generation number. Intuitively, foraging activity should
persist at the foraging equilibrium state if every returning
forager recruits more than one new forager (i.e., R041)
(Fig. 3). However, we note that R0 is ultimately bounded
above (i.e., R0oβk1=ðk2ðγþdrÞÞÞ. The biological interpretation
of this condition is that the expected return rate of newly
activated foragers is always less than the recruitment rate,
which simply reflects the fact that it takes time for active
foragers to discover food items and return to the nest in our
model (Fig. 1).

3. The sign of Rc (10) determines the maximum number of
interior foraging equilibria. This depends in part on the rate
ratio:

RA ¼
βAn

0

k1þγ
: ð14Þ

RA represents the relative change in forager availability
due to a single returning forager near the non-foraging
equilibrium state. If Rco0: ) αk1oαdrþdf ðγþdrÞ3
ðk1þγÞ=βAn

0

� 	R0 ¼R0=RAo1, then the forager availability
rate always decreases for any number of returning foragers.
This is because the baseline recruitment rate is always
larger than the net production of available foragers over
the average foraging duration (i.e., βAn

04 ðk1þγÞR0). In this
case, model (4) may have either zero or one interior
equilibrium E2 (see Fig. 2(a)). Conversely, if Rc40:
) αk14αdrþdf ðγþdrÞ3R0=RA41, then the forager avail-
ability rate may increase for a range of returning foragers. In
this case, model (4) may have zero, one E2, or two interior
equilibria Ei; i¼ 1;2 (see Fig. 2(b)).

4. Model (4) can undergo a backward bifurcation as our analysis
reveals later in this section. This bifurcation is characterized by
the emergence of a second threshold ~RΔ defined as follows:

~RΔ ¼max RA;RΔð Þ ¼RAþRΔ

2
þ RA�RΔ


 



2
ð15Þ

where

RΔ ¼ ϕð0Þ
ϕmax

¼ k1
ϕmax

¼ 4k1ðβAn

f �γÞ
ðβAn

f �γþk1Þ2
¼ 4k1α½αdrþdf ðγþdrÞ�

αðk1�drÞ�df ðγþdrÞ
� �2r1 ð16Þ

represents the relative contribution of the worker arrival rate
(k1) to the maximum possible rate of forager availability. As
discussed in Section 6, ~RΔ represents a sub-critical threshold
where Model (4) goes from having zero to two interior
equilibria (Fig. 3(b)). Biologically, however, it defines a lower
bound for R0 (i.e., the minimum number of new forager
recruits, per returning forager, that are necessary for maintain-
ing foraging activity).

The stability of an equilibrium En ¼ ðAn; Fn;RnÞ is determined by the
Jacobian matrix (17) of Model (4) evaluated at the equilibrium:

JjEn ¼ ðAn ;Fn ;RnÞ≔

�βRn� k2
1þRn 0 �βAnþγþ k2A

n

ð1þRnÞ2

βRn �ðαþdf Þ βAn

0 α �ðγþdrÞ

2
664

3
775:

ð17Þ

The following theorem provides the explicit condition on the
existence and local stability of the non-foraging equilibrium E0

and the foraging equilibrium Ei; i¼ 1;2.

Theorem 3.2 (Existence & Stability of Equilibria). The foraging
model (4) can have one (E0), two (E0 and E2), or three equilibria
(E0 and Ei; i¼ 1;2) depending on the values of R0, RA, and RΔ.
Sufficient conditions for the existence and local stability of these
equilibria are summarized in Table 2.

Remark 3.1. Theorem 3.2 implies that (i) R0 determines the
stability of the non-foraging equilibrium, (ii) R0, RA, and RΔ
determine the existence of the foraging equilibria Ei; i¼ 1;2 (see
Table 2 and Fig. 2); and (iii) model (4) only exhibits equilibrium
behavior (i.e., there are no periodic or chaotic dynamics).

3.2. Global dynamics and bifurcations

Based on our analytical results shown in Theorems 3.1 and 3.2,
and observations in Remark 3.1 we can classify global dynamics of
the foraging model (4) in terms of R0 RA, and RΔ as the following
theorem:

Corollary 3.1 (Global dynamics). Depending on the values of R0 RA,
and RΔ, the global dynamics of model (4) can be classified into one of
three scenarios (also see Table 3):

1. No activity: If R0 is small such that R0ominf1;RAg or
R0o ~RΔo1, then the foraging model (4) has only the non-
foraging E0 ¼ ðk1=k2;0;0Þ which is globally stable. Under either of
these conditions, the colony will be unable to maintain its
foraging activity.

2. Persistent activity: If R0 is large such that R041, then the
foraging model (4) has the non-foraging equilibrium E0 and the
foraging equilibrium E2where E0 is a saddle and bE2

is globally stable. Under this condition, the colony will
persistently reach stable; high levels of activity.
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3. Bistablity: If R0 is intermediate in the range ~RΔoR0o1, then
the foraging model (4) has the non-foraging equilibrium E0 and
two foraging equilibria Ei; i¼ 1;2 where both E0 and E2 are
locally asymptotically stable. E1 is always a saddle point. Under
this condition, the colony can potentially reach intermediate
levels of activity depending on initial conditions.

Notes: Based on our analytical results in Theorems 3.1 and 3.2
and their Corollary 3.1, we conclude that the foraging model (4)
exhibits two kinds of global dynamics (see Fig. 3).

1. If Rco0 (i.e., R0=RAo1), then model (4) undergoes a forward
(transcritical) bifurcation as R0 increases past minf1;RAg char-
acterized by the emergence of a globally stable foraging activity
equilibrium E2 (see Fig. 3(a)).

2. If Rc40 (i.e., R0=RA41), then model (4) undergoes a back-
ward (subcritical) bifurcation as R0 decreases past one and a
saddle-node bifurcation at ~RΔ ¼maxfRA;RΔg. The backward
bifurcation creates a region of bi-stability for the non-foraging
equilibrium E0 and the foraging equilibrium E2 within ~RΔo
R0o1 (see Fig. 3(b)).

As summarized in Corollary 3.1, our analysis indicates that the
forager generation number (R0) and the secondary threshold ( ~RΔ)
play essential roles in the dynamics of model (4) through their
impacts on forager recruitment and availability (see Remark 3.1
and Fig. 3). Thus, our results go significantly further than previous
models (e.g., Gordon et al., 2013; Prabhakar et al., 2012; Schafer
et al., 2006) because they describe biologically meaningful condi-
tions under which colonies can reach stable levels of activity, using
parameters that reflect both colony-specific and ecological vari-
ables (Table 3).

Starting from low levels of activity, colonies can quickly reach
high foraging levels if the average number of recruits per returning
forager becomes greater than one (R041). However, subsequent
reductions of R0 below one may not necessarily cause the colony
to suspend activity as long as R04 ~RΔ (Fig. 3(b)). From a biological
standpoint, the degree to which colonies can absorb reductions of
R0 (e.g., due to environmental perturbations of forager return
rates) can be envisaged to reflect resilience or foraging robustness.
To explore this idea, it is important to identify which parameters
have greater sway on foraging dynamics, particularly through their
impacts on R0 and the size of the foraging basin of attraction in
model (4) (i.e., the set of initial conditions for which the colony
reaches stable foraging levels). This is our focus in the next
subsection.

3.3. Connecting bistability with foraging robustness

As mentioned in Corollary 3.1, model (4) is bistable whenever
~RΔoR0o1. In this case, a two-dimensional separatrix manifold
partitions the basins of attraction (or attraction regions) of the
non-foraging (E0) and foraging (E2) equilibria in R3

þ (Fig. 4).
Biologically, this means that there exists a critical foraging size:
D¼ ð ~A; ~F ; ~RÞ below which the colony ultimately ceases foraging,
and above which foraging activity can persist (Fig. 5). There is a
natural relationship between R0, ~RΔ, and the attraction regions
for E0 and E2. Suppose that ~RΔ ¼RΔ4RA, then we can define the
quantity:

ξ¼R0� ~RΔ ¼R0 � 1�
~RΔ

R0

� �
¼ k1
k2A

n
� 1�4ðβAn�γÞk2An

ðβAn�γþk1Þ2

 !
: ð18Þ

Simulations show that the magnitude of ξ correlates with the
foraging basin of attraction (i.e., the attraction region of E2, Fig. 5).
However, to better understand and quantify how small changes in
one (or more) model parameters will affect the size of this region,
we will use sensitivity analysis (Arriola and Hyman, 2009). More
specifically, we employ the normalized forward sensitivity index:

Γu
p≔ lim

δp-0

δu
u

� �
δp
p

� � ¼ p
u
∂u
∂p

; ua0 ð19Þ

where u is a differentiable output variable of interest and p is
a nominal input parameter (Arriola and Hyman, 2009). The nor-
malized sensitivity index (Γu

p ) effectively estimates the expected

Fig. 3. One-dimensional bifurcation diagrams for model (4). The origin (Rn

2 ¼ 0) corresponds to the non-foraging equilibrium state which is stable whenever R0o1, and
unstable otherwise. (a) A stable interior equilibrium (solid) bifurcates “forward” from the origin when R0 ¼ 1 (left panel). (b) An unstable interior equilibrium (dashed)
bifurcates“backward” from the origin when R0 ¼ 1 and merges with its stable branch at ~RΔ . Note: ∂Rn

2=∂R040 for R04 ~RΔ . (a) Forward bifurcation when Rco0 (i.e.,
R0=RAo1). (b) Backward bifurcation when Rc40 (i.e., R0=RA41).

Table 2
Equilibria and stability. An

0 ¼ k1=k2 ; R0 ¼ An

0=A
n

f ;RA ¼ βAn

0=ðk1þγÞ, RΔ ¼ k1=ϕmax ,

and ~RΔ ¼max RA;RΔð Þ. An

f and ϕmax are given in (7) and (11) respectively.

Equilibria Existence condition Stability condition

E0 Always Locally stable if R0o1 saddle if R041
E1 ~RΔoR0o1 Always a saddle
E2 ~RΔoR0o1, or R041 Always locally stable
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percent change of a focal quantity (e.g., R0) given a unit percen-
tage change (i.e., 71%) of one of its component parameters (e.g.,
γ). Moreover, because parameters can be classified into those that
likely depend on colony-specific properties (i.e., k1, k2, and β), and
those that reflect environmental conditions (e.g., α, γ, etc.), the
sensitivity index (Γu

p ) can provide some intuition about which
components colonies might regulate to improve short-term
robustness to foraging perturbations.

From Eqs. (18) and (19) it is straightforward to derive expres-
sions defining ΓR0

p and Γ
~RΔ
p as a function of their parameters.

Table 4 lists the predicted indices based on the default parameter
values compiled in Table 1. In general, parameters that increase R0

tend to decrease ~RΔ (although not always proportionally). For
instance, the sensitivity index: ΓR0

γ ¼ �1:48 indicates that a 1%
increase in the forager turnover rate should decrease R0 by 1.48%
and vice versa (Table 4).

Based on the results, we predict that changes in both the worker
arrival rate at the vestibule (k1) and the effective interaction rate (β)

should have the largest positive impacts on ξ, and thus the size of
the attraction region of E2. On the other hand, changes in the
forager turnover rate (γ) should have the largest negative impact on
ξ, followed by the retirement rate (k2). Intuitively, we expect that
colonies with larger values of ξ will have a larger region of
bistability below R0o1. This may reflect greater resilience to
perturbations that further reduce R0 (e.g., due to increased preda-
tion on the foraging trail (Munger, 1984)). Estimating ξ may there-
fore be useful for evaluating inter-colony differences in respon-
siveness and foraging robustness under comparable environmental
conditions as has been observed in experiments (Gordon, 2002;
Gordon et al., 2011, 2013).

Finally, our results here suggest that colonies should favor
investments in regulating k1, k2, and β as these are the only
parameters that yield equal or greater returns in modulating ξ
(Table 4). Moreover, as our bifurcation analysis indicates, colony-
specific parameters like the worker arrival rate at the vestibule (k1)
play a critical role in the overall dynamics of activity through their

Fig. 4. Phase space diagrams for model (4). Starting from initial conditions (filled circles), trajectories approach a unique globally stable foraging equilibrium (E2) (a).
Conversely, trajectories approach either the non-foraging equilibrium (E0) or the foraging equilibrium (E2) which are both locally stable whenever ~RΔoR0o1 (b). Notice
that the unstable equilibrium (E1) comprises a separatrix that partitions the phase space into a region where foraging can persist. (a) One interior equilibrium (R041).
(b) Two interior equilibria ( ~RΔoR0o1).

Fig. 5. Attraction regions for the no-activity (E0, red) and the interior foraging equilibrium (E2, blue) for (a) ξ¼ 0:256, and (b) ξ¼ 0:143. The critical number of returning
foragers necessary to sustain activity scales nonlinearly with the number ofactive foragers for any fixed number of available foragers ( ~A). However, no such relationship exists
between available and active foragers (not shown). Finally, decreasing ξ by less than 50% more than doubles the attraction region for E0. Other parameters:
k1 ¼ 0:5; k2 ¼ 0:2; γ ¼ 0:03; α¼ 0:04; df ¼ 2dr ¼ 0:005.

Table 3
Global dynamics. An

0 ¼ k1=k2 ; R0 ¼ An

0=A
n

f ; RA ¼ βAn

0=ðk1þγÞ, RΔ ¼ k1=ϕmax , and ~RΔ ¼max RA ;RΔð Þ. An

f and ϕmax are given in (7) and (11) respectively.

Scenario Condition Dynamics

Only E0 R0ominf1;RAg or R0o ~RΔo1 Globally stable
E0 and E2 R041 E0 is a saddle and E2 is globally stable
Ei ; i¼ 0;1;2 ~RΔoR0o1 Both E0 and E2 are locally stable and E1 is a saddle
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impacts on forager availability (Fig. 3). For instance, if k1 is small
such that R0=RAo1, then foraging is highly vulnerable to pertur-
bations that decrease R0 below one (Fig. 3(a)). On the other hand,
if k1 is large such that R0=RA41, then foraging may persist
despite perturbations that decrease R0 below one (Fig. 3(b)).
These observations highlights the regulatory importance of the
colony-specific parameters in our model.

4. Numerical simulations

Previous experiments suggest that colonies of the seed har-
vester ant P. barbatus may use successful forager return rates to
regulate overall foraging activity via worker interactions (Pinter-
Wollman et al., 2013; Greene and Gordon, 2007; Schafer et al.,
2006). Our theoretical results predict that R0, and ~RΔ will have a
significant influence on a colony's foraging activity. In this section,
we will begin with an empirical validation of model (4) by
performing a model fit to experimental data. In addition, we
explore a dynamic sensitivity analysis of (4) to identify parameters
(in different bifurcation regions) that drive model dynamics, and
quantify their effects at both equilibrium (un-disturbed) and
perturbed foraging states.

4.1. Model validation

To examine whether our model simulates realistic responses to
perturbations, we replicate in silico the experimental perturbation
described in Pinter-Wollman et al. (2013). In multiple observations
over a 3-day period, returning foragers of four mature P. barbatus
(colonies: N1, N4, N5, and N7 ) were artificially prevented from
entering the nest for either 3 or 10 min during periods of high
foraging activity. Throughout the trial, the numbers of available
foragers in the vestibule along with the numbers of outgoing and
returning foragers were recorded. In most instances, the number
of outgoing foragers declined in response to the removals and
recovered to varying levels of activity once returning foragers were
allowed to return to the nest.

To estimate model parameters we used the averaged time-
series for each colony (see Table 5). Along with fixed experimental
parameters (e.g., times of removal) we generated best-fit response
curves corresponding to observations for both 3 and 10 min
removals. Because the quality of fits did not vary extensively
among colonies, we show results for one representative colony
(N7) (Fig. 6).

The parameter estimates of R0 and ~RΔ after the perturbation
indicate that colony activity was in the bistable foraging region
during the 3 min removals (R0 ¼ :03; ~RΔ ¼ :0011) and 10 min
removal (R0 ¼ :52; ~RΔ ¼ :18). We found similar values for colonies

N1 and N4 (not shown). These results are consistent with
empirical observations noting that harvester ant colonies will
suppress and sometimes suspend foraging altogether if there are
persistent declines in the forager return rate (Gordon, 2002).

The low estimates of ~RΔ, particularly in the 3 min removals, do
not suggest that foraging can be recovered without recruitment. In
the context of our model, the low values reflect the increased
potential of colonies to recover from short-term versus long-term
interruptions. We stress that the ability of colonies to maintain
their activity, in the bistable foraging region (i.e., ~RΔoR0o1)
depends critically on the distribution of the forager workforce
between the available, active, and returning states (Fig. 4). In terms
of biological significance, these estimates likely reflect the fact that
harvester ant colonies are not very sensitive to foraging interrup-
tions once they have reached high stable levels of activity (Gordon,
2002; Greene et al., 2013; Jandt et al., 2014).

Finally, we acknowledge some model limitations may have
affected the goodness of fit. Most obviously, our model does not
capture any biological stochasticity. Thus, we cannot comment
extensively on the strength of our estimates of R0 and ~RΔ to
predict the recovery dynamics after the perturbation when the
number of foragers becomes very small. Furthermore, we do not
account for spatial constraints of vestibule size and structure
which will influence the baseline numbers of available foragers,
interaction patterns inside the vestibule, and any delays affecting
the re-availability of returning foragers once inside the nest.
Indeed, a summary analysis of the Pinter-Wollman et al. (2013)
activity data revealed a lagged correlation between the numbers of
ants in the vestibule and number of returning foragers (Pearson's
product-moment correlation, t ¼ 1:9592, df ¼ 13, p¼ 0:07189).
Such delays should be accounted for in future models.

4.2. Simulated perturbation and dynamic sensitivity analysis

It is often the case in non-linear systems that the relative
importance of one or more parameters on the observed dynamics
might change under different conditions. Our results so far suggest
that changes in four key parameters: k1, β, k2 and γ, should greatly
influence the behavior of model (4) because of their predicted
effects on R0 and ~RΔ (see Table 4). In the context of a foraging
colony, the relative importance of these parameters may change
depending on whether activity is close to or far away from
equilibrium (e.g., due to a foraging perturbation). In the appendix,
we explore this question by performing a dynamic sensitivity
analysis of model (4) during a perturbation. Our results predict
varying patterns of sensitivity for each parameter, during equili-
brium and non-equilibrium periods (Fig. 7a–d). In general, these
effects were most pronounced at the height of the perturbations,
again highlighting the potential regulatory importance of these
parameters. However, we caveat that the predicted sensitivity

Table 5
Estimated parameters (scaled in minutes) and one-standard deviations for colony
N7. Estimates were generated using the Nonlinear grey-box modeling toolbox

provided in MATLABs . Death rates were fixed prior and after the perturbation
(df ¼ dr ¼ 0; to4&t414) and estimated for returning foragers for 3-min removals:
(a) dr ¼ 1:0110170:39937; tA ½4;7� and 10-min removals, (b) dr ¼ 1:010857
0:278261; tA ½4;14�. Sampling intervals are same as in Table 1.

Parameter Estimated values (colony N7)

3-min removal SD 10-min removal SD

α 0.6354 0.3930 8.251 15.325
β 0.0386 0.0236 0.5003 0.8878
γ 0.4568 0.2973 6.028 11.493
k1 11.067 12.783 10.763 6.532
k2 34.642 57.712 1.729 6.056

Table 4
Normalized sensitivity indices (Γu

p) of R0, ~RΔ in order of impact on ξ¼R0� ~RΔ .
Sensitivity indices (dimensionless) quantify the expected percent change (positive
or negative) in each quantity given a 1% perturbation of a component parameter.
Results show that changes in the worker arrival rate (k1) and the forager turnover
rate (γ) should yield respectively the largest net positive and negative change in ξ.

Parameter Sensitivity index (Γu
p)

R0 ~RΔ ξ

k1 þ0.99 �0.97 þ1.97
β þ0.99 0 þ0.99
α þ0.11 �0.603 þ0.713
dr �0.07 þ0.42 �0.49
df �0.11 þ0.603 �0.713
k2 �1.00 0 �1.00
γ �0.92 þ0.56 �1.48
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Fig. 6. Simulations of forager removal perturbation experiment described in Pinter-Wollman et al. (2013). Model (4) was fitted (bold lines) to averaged time-series (circles) of
available (top), outgoing (middle), and returning (bottom) foragers for colony N7. Error-bars show the variances between 3 trials reported in Pinter-Wollman et al. (2013).
Removals began at t¼4 and lasted either 3 min (left panel) or 10 min (right panel). Parameter estimates are given in Table 5.

Fig. 7. Dynamic model sensitivity w.r.t. select parameters during simulated perturbations: (a) Effective interaction rate, β. (b) Worker arrival rate, k1. (c) Retirement rate, k2.
(d) Forager turnover rate, γ. The model is initialized at equilibrium in the bistable foraging region ~RΔoR0o1, where R0 ¼ 0:19; ~RΔ ¼ 0:01. A perturbation is introduced
between 20oto40 by increasing returning forager death rates. Sensitivity indices (y-axis, dimensionless) describe the expected percentage change in the numbers of
available foragers (green), activated foragers (blue) or returning foragers (red) given a 1% increase in the focal parameter. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)
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patterns depend on our model formalism, and may diverge from
predictions of an analogous discrete system when populations
are small.

5. Discussion

We have developed a simple model describing the interaction-
based recruitment and regulation of collective foraging in harvester
ant colonies (Gordon, 2002; Pinter-Wollman et al., 2013; Greene and
Gordon, 2007; Greene et al., 2013). Our main result is that depend-
ing on model parameters, foraging activity can either persist at high
levels or may advance toward one of two coexisting attractors
corresponding to an intermediate or non-foraging state. The dyna-
mical predictions of model (4) detailed in Theorems 3.1 and 3.2,
Remark 3.1, and Corollary 3.1 can be summarized as follows:

1. Foraging is persistent whenever the expected number of
recruits per successful returning forager, over the typical
duration of a foraging trip, is larger than one (i.e., R041).

2. If R0 is less than one, foraging may still be sustained if ~RΔoR0

which results in two possibilities: either (i) R0 is larger than
the ratio of the worker arrival rate into the vestibule and
the maximum rate of change of non-retiring foragers
(i.e., R04RΔ ¼ k1=ϕmax4RA ¼ βAn

0=ðk1þγÞ) or (ii) R0 is larger
than the ratio of the expected recruitment rate for a successful
returning forager and the average rate of increase of available
foragers in the vestibule when the colony is near its non-
foraging equilibrium (i.e., R04RA ¼ βAn

0=ðk1þγÞ4RΔ ¼
k1=ϕmax).

Previous modeling studies have assumed that returning for-
agers have a constant effect on the rate of forager recruitment
without identifying any underlying causal parameters (Gordon
et al., 2013; Prabhakar et al., 2012; Schafer et al., 2006). Here, we
identified the forager generation number (R0) as a threshold
quantity. R0 is influenced by a combination of internal and ext-
ernal variables including the baseline number of available foragers,
effective forager interaction rates inside the vestibule, and the
average duration of a foraging trip (13). Moreover, because the
baseline recruitment rate (i.e., βAn

0) is determined by colony-
specific activity levels which determine the rates at which workers
arrive to (k1), retire from (k2), and interact in (β) the vestibule, we
suggest that R0 may be regulated by the colony relative to external
conditions. Indeed, ants alter encounter rates, as a function of food
availability (Pinter-Wollman et al., 2013).

Our model also makes testable predictions about the expected
number of available foragers in the vestibule as a function of
recruitment (13): (i) colonies in the persistent activity region (i.e.,
R041) are likely to have large numbers of available foragers during
periods of low forager returns such as when the weather becomes
warmer and drier, and relatively smaller numbers as forager return
rates increase. (ii) Colonies in the bistable foraging region (i.e.,
~RΔoR0o1) are likely to have large numbers of available foragers
during periods of high forager returns such as when food avail-
ability is high, and relatively smaller numbers as forager return
rates decline (see Table 3 and Fig. 8). Interestingly, these observa-
tions suggest that colonies should show varied patterns of recovery
from a sudden perturbation, such as predation by a horned lizard,
depending on whether they are in the persistent or bistable
foraging region. Because the rate at which foraging resumes after
a perturbation depends primarily on the numbers of available
foragers in the vestibule (Pinter-Wollman et al., 2013), our results
suggest that colonies in the bistable region may recover faster from
small, short-term reductions in forager return rates. Conversely,
colonies in the persistent region may recover faster from large,
long-term reductions in forager return rates. Although we did not
have sufficient data to test this prediction, the insight highlights the
advantage of our modeling approach over previous attempts (e.g.,
Prabhakar et al., 2012) in that we can better connect and under-
stand the dynamics of forager availability and recruitment with
varied patterns of foraging activity.

Our analysis and simulations confirm that the size of the bistable
foraging region (i.e., ξ¼R0� ~RΔ) correlates with the size of the
foraging basin of attraction in model (4) (Figs. 3 and 5). Thus, we
suggest that ξ could theoretically serve as an indicator of foraging
robustness, predicting that colonies with larger values of ξ should be
more resilient to declines in forager return rates and foraging interrup-
tions compared to colonies with smaller vales of ξ. Along similar lines,
sensitivity analysis of R0 suggests that it will most likely be impacted
by colony-specific properties that determine averageworker arrival rate
(k1) and forager retirement rate (k2), as well as the forager interaction
rate (β) and turnover rate (γ) (see Table 4). These results suggest that
modulating the movement of foragers from the inner nest to the
vestibule (and vice versa) along with the management of interaction
rates inside the vestibule are important components likely to have the
greatest impact on the regulation of foraging activity. This prediction is
consistent with the results of a recent study, which demonstrated that
harvester ant colonies regulate their foraging activity at multiple
timescales providing plasticity and robustness to short and long term
foraging perturbations (Pinter-Wollman et al., 2013).

An important biological insight of our results is that an interaction-
based forager recruitment strategy shares many of the regulatory
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Fig. 8. Dynamics of model (4) under perturbation. The model is initialized at equilibrium with parameters satisfying (a) persistent region: R0 ¼ 1:19, (b) bistability region:
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strengths of leader-based recruitment (e.g., tandem running), and self-
organizing chemical recruitment (e.g., pheromone trails). Although
tandem running conveys more direct information about foraging
conditions, which can allow the colony to flexibly respond to short-
term changes in environmental profitability, it critically lacks the
mass-recruitment properties of self-reinforcing pheromone trails
(Traniello, 1989). On the other hand, the strong reinforcing feedbacks
that associate trail quality with forager usage and pheromone strength
can often weaken the colony's ability to flexibly track changes in
resource quality (Dussutour and Nicolis, 2013). Moreover, the fidelity
of pheromone-based trail networks is often limited by volatility and
degradation under variable environmental conditions outside the
control of the colony. An interaction-based recruitment strategy
circumvents these limitations because it is self-organizing (in that
every returning forager is a potential recruiter), and because it can be
more adaptively controlled by the colony. This could be achieved, for
instance, if available foragers alter their interaction rates inside the
vestibule in response to fluctuations in forager return rates as seen in
Pinter-Wollman et al. (2013). Interaction rates may change by altering
walking patterns, for example an increased path tortuosity will reduce
interaction rate as shown both theoretically (Adler and Gordon, 1992)
and empirically (Pinter-Wollman et al., 2011) for this ant species.

Our results additionally suggest that the dynamics of forager
availability in the vestibule may play a particularly important role in
sustaining activity when forager return rates are low (Table 4 and
Fig. 7). The vestibule must be populated sparsely, not densely, to keep
forager activation rates high. Because an individual worker's retire-
ment decision is made based on her perception of local forager
densities inside the vestibule, colonies might differ in their level of
responsiveness to forager return rates simply based on worker
response thresholds. Indeed, recent works by Pinter-Wollman et al.
(2013) and Gordon et al. (2013) have shown that colonies can vary
substantially in the differences between per-capita interaction rates
(within the vestibule) during periods of high versus low forager
return, and in the effects of humidity on forager activation rates.

In conclusion, our results support the evidence that a simple
interaction-based recruitment strategy can provide a robust regula-
tory system for managing collective foraging in ant colonies (Pinter-
Wollman et al., 2013; Greene et al., 2013). Furthermore, our model
provides useful insights into how internal and external variables can
impact foraging dynamics, including identifying potential sources of
inter-colony variability in activity patterns (Gordon et al., 2013).
Although our model is based on the foraging ecology of harvester
ant colonies, our framework can be generalized to analogous systems
that rely on local worker interactions (e.g., nest construction in social
wasps Jeanne, 1986, quorum-sensing in rock ants, Pratt, 2005, etc.).

The current model, however, does not include some potentially
important regulatory components that have been hypothesized
(Pinter-Wollman et al., 2013; Gordon et al., 2013). Two such examples
include potential regulatory feedbacks between forager return rates
and worker arrival rates, as well as the effects of spatial constraints
on interaction patterns inside the vestibule. A simple modification of
our model can link worker arrival rates to the number of available
foragers, and employ a saturating forager recruitment term. These
complexities will be addressed in our future work.

6. Proofs

6.1. Proof of Theorem 3.1

Proof. According to the formulation of the foraging model (4), the
following holds for ðA; F;RÞAR3

þ :

A0jA ¼ 0 ¼ k1þγRZk1
F 0jF ¼ 0 ¼ βARZ0

R0jR ¼ 0 ¼ αFZ0:

Thus, applying the results of Theorem A.4, p. 423 in Thieme
(Thieme, 2003), we can conclude that the foraging model (4) is
positively invariant in R3

þ .
Let N¼ AþFþR, then we have

N0 ¼ A0 þF 0 þR0 ¼ k1�
k2A
1þR

�df F�drR:

Thus, we have the following inequalities based on the property of
the positivity invariance:

k1�max k2; df ; dr
� �

Nrk1�k2A�df F�drRrN0

rk1ð1þRÞ�k2A�df F�drRð1þRÞ
1þR

:

This indicates the following two cases:

1. Bounded below:

N0Zk1�max k2; df ; dr
� �

N ) lim inf
t-1

NðtÞZ k1
maxfk2; df ; drg

:

2. Bounded above:

N0rk1ð1þRÞ�k2A�df F�drRð1þRÞ
1þR

¼ k1ð1þRÞ�drR
2�k2A�df F�drR
1þR

rk1ð1þRÞ�drR
2�minfk2; df ; drgN
1þR

¼
�dr R� k1

2dr

� �2

þ k21
4dr

þk1�min k2; df ; dr
� �

N

1þR

r
k21
4dr

þk1�min k2; df ; dr
� �

N

1þR
:

This indicates that

lim sup
t-1

NðtÞr
k1þ

k21
4dr

minfk2; df ; drg
:

Therefore, we can conclude that every trajectory starting in R3
þ is

attracted to the following compact set:

C ¼ ðA; F;RÞAR3
þ :

k1
maxfk2; df ;drg

rAþFþRr
k1þ

k21
4dr

minfk2;df ; drg

8>>><
>>>:

9>>>=
>>>;

which also implies that the foraging dynamics of model (4) can be
restricted to the compact set C.

Let

M¼
k1þ

k21
4dr

minfk2; df ; drg
:

Because model (4) is bounded by M, the number of returning ants
R is also bounded by M. This implies that for any ϵ40, there exists
time T large enough, such that we have

A0 ¼ k1�βARþγR�k2
A

1þR
Zk1�βðMþϵÞA

�k2AZk1� βðMþϵÞþk2
� 	

A; for all t4T :
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This indicates that

lim inf
t-1

AðtÞZ k1
βMþk2

:

Therefore, we can conclude that A is persistent in R3
þ . □

6.2. Proof of Theorem 3.2

Proof. Because the non-foraging equilibrium E0 ¼ ðAn

0;0;0Þ ¼
ðk1=k2;0;0Þ always exists, we focus on sufficient conditions lead
to the existence of the foraging equilibrium Ei ¼ ðAn

f ; F
n

i ;R
n

i Þ ¼
An

f ; ðγþdrÞ=


αRn

i ;R
n

i Þ; i¼ 1;2 where An

f ¼ ððαþdf ÞðγþdrÞÞ=αβ and
Rn

i are roots of the equation ϕðRnÞ ¼ k2A
n

f with

ϕðRÞ ¼ k1�ðβAn

f �γÞR
h i

ð1þRÞ:

Therefore, the existence of Ei is determined by the positive intercept
(s) of the quadratic function ϕðRÞ and the horizontal line k2A

n

f , which
can be classified into the following two cases depending on the sign of

the critical point Rc ¼ γ�βAn

f þk1
2ðβAn

f � γÞ of ϕðRÞ (see Fig. 2(b)):

1. If Rco0 (see Fig. 2(a)), then we have

Rc ¼
γ�βAn

f þk1
2ðβAn

f �γÞ o03An

f 4
k1þγ
β

3k1odrþ
df ðγþdrÞ

α

3R0 ¼
k1

k2A
n

f

o k1β
k2ðk1þγÞ:

In this case, the foraging dynamics can have E0 or Ei; i¼ 0;2
depending on the ratio of ϕð0Þ=k2An

f ¼ k1=k2A
n

f :
(a) If ϕð0Þ=k2An

f ¼ k1=k2A
n

f o1 (i.e., R0o1, see the purple
horizontal line in Fig. 2(a)), then either there is no intercept
of the null clines or the intercepts of ϕðRÞ and the
horizontal line k2A

n

f are located in the black region
(i.e., negative values). In this scenario, the foraging model
(4) only has the non-foraging equilibrium E0.

(b) If ϕð0Þ=k2An

f ¼ k1=k2A
n

f 41 (i.e., R041, see the cyan hor-
izontal line in Fig. 2(a)), then there is a unique foraging
equilibrium E2. Thus, in this scenario, the foraging model
(4) has the non-foraging equilibrium E0 and the foraging
equilibrium E2.

2. If Rc40 (see Fig. 2(b)), then we have

Rc ¼
γ�βAn

f þk1
2ðβAn

f �γÞ o03An

f o
k1þγ
β

3k14drþ
df ðγþdrÞ

α

3R0 ¼
k1

k2A
n

f
4

k1β
k2ðk1þγÞ:

In this case, the foraging dynamics can have E0 or Ei; i¼ 0;2 or
Ei; i¼ 0;1;2 depending on the ratio of ϕð0Þ=k2An

f ¼ k1=k2A
n

f and
ϕmax=k2A

n

f :
(a) If k2A

n

f 4ϕmaxZϕð0Þ ¼ k1 , we have

k2A
n

f 4ϕmaxZϕð0Þ ¼ k130oR0 ¼
k1

k2A
n

f
oRΔ ¼ k1

ϕmax
:

In this case, the horizontal line k2A
n

f (see the purple
horizontal line in Fig. 2(b)) is above the quadratic equation
ϕðRÞ , i.e., there is no foraging equilibrium. Thus, in this
scenario, the foraging model (4) has only the non-foraging
equilibrium E0 .

(b) If k1ok2A
n

f oϕmax (see the dark green horizontal line in
Fig. 2(b)), then we have the following equalities:

k1ok2A
n

f oϕmax30oRΔ ¼ k1
ϕmax

o k1
k2A

n

f

¼R0o1o
k2A

n

f

ϕmax
:

In this scenario, the foraging model (4) has the non-foraging
equilibrium E0 and two foraging equilibria Ei; i¼ 1;2.

(c) If ϕð0Þ=k2An

f ¼ k1=k2A
n

f 41 (i.e., R041 , see the cyan hor-
izontal line in Fig. 2(b)), then there is a unique foraging
equilibrium E2 . Thus, in this scenario, the foraging model
(4) has the non-foraging equilibrium E0 and the foraging
equilibrium E2.

Now we focus on the local stability of the non-foraging equilibrium
E0 and two foraging equilibria Ei; i¼ 1;2 when they exist. The local
stability of E0 is determined by the eigenvalues λi; i¼ 1;2;3 of the
Jacobian matrix associated with the foraging model (4)

JjE0
≔

�k2 0 �βk1
k2

þk1þγ

0 �ðαþdf Þ βk1
k2

0 α �ðγþdrÞ

2
6664

3
7775

where

λ1 ¼ �k2; λ2þλ3 ¼ �ðαþdf þdrþγÞo0; and λ2λ3

¼ �αβk1
k2

þðγþdrÞðαþdf Þ ¼ ðγþdrÞðαþdf Þ 1�R0½ �:

This indicates that if R0o1 , then λio0; i¼ 1;2;3 ; while if
R041 , then λi40;2;3 . Therefore, E0 is locally asymptotically
stable if R0o1 and it is a saddle if R041 .

The Jacobian matrix evaluated at Ei; i¼ 1;2 can be represented
as follows:

JjEi
≔

�βRn

i � k2
1þRn

i
0 �βAn

f þγþ k2A
n

f

ð1þRn

i Þ2

βRn

i �ðαþdf Þ βAn

f

0 α �ðγþdrÞ

2
6664

3
7775

whose eigenvalues satisfy the characteristic polynomial:

ρðλÞ ¼ λ3þc2λ
2þc1λþc0 ¼ 0 ð20Þ

with

c2 ¼ βRn

i þðαþdf þdrþγÞþ k2
1þRn

i
40

c1 ¼ ðαþdf þdrþγÞ βRn

i þ
k2

1þRn

i

� �
40

c0 ¼ βRn

i ðγþdrÞdf þαdr
� ��k2R

n

i ðγþdrÞðαþdf Þ
ð1þRn

i Þ2
ð21Þ

According to the Routh–Hurwitz criteria (Brauer and Castillo-
Chavez, 2012), we conclude that the foraging equilibrium Ei is
locally asymptotically stable if and only if c1c24c040 . According
to (21), we have

1. c1c24βRn

i ðαþdf þdrþγÞ2 indicates that

c1c2�c04βRn

i ðαþdf þdrþγÞ2�βRn

i ðγþdrÞdf þαdr
� �

40:

Because c1c24c03c1c2�c040 , thus, we can conclude
c1c24c0 always holds for both Rn

i ; i¼ 1;2.
2. The following equivalent relationships holds:

c0403βð1þRn

i Þ2 ðγþdrÞdf þαdr
� ��k2ðγþdrÞðαþdf Þ40

3 ð1þRn

i Þ24
k2ðγþdrÞðαþdf Þ
β ðγþdrÞdf þαdr
� �¼ k2A

n

f

βAn

f �γ
ð22Þ

Notice that 0oRn

1oRn

2 are roots of ϕðRÞ ¼ k2A
n

f , thus we have

ϕðRn

i Þ ¼ k1�ðβAn

f �γÞRn

i

h i
ð1þRn

i Þ

¼ k2A
n

f 3
k1

βAn

f �γ
�Rn

i

" #
ð1þRn

i Þ ¼
k2A

n

f

βAn

f �γ
:

O. Udiani et al. / Journal of Theoretical Biology 367 (2015) 61–7572



This indicates that

c0403 ð1þRn

i Þ24
k1

βAn

f �γ
�Rn

i

" #
ð1þRn

i Þ

31þRn

i 4
k1

βAn

f �γ
�Rn

i

3Rn

i 4
k1

2ðβAn

f �γÞ�
1
2

Recall that

Rn

1 ¼
k1

2ðβAn

f �γÞ�
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2ðβAn

f �γÞ�
1
2

 !2

þk1�k2A
n

f

βAn

f �γ

vuut

Rn

2 ¼
k1

2ðβAn

f �γÞ�
1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2ðβAn

f �γÞ�
1
2

 !2

þk1�k2A
n

f

βAn

f �γ

vuut ð23Þ

Then we have

Rn

1o
k1

2ðβAn

f �γÞ�
1
2
) c0o0

Rn

24
k1

2ðβAn

f �γÞ�
1
2
) c040

The discussion above implies that if the foraging equilibrium Ei

exists, then E1 is always a saddle and E2 is always locally
asymptotically stable. □

6.3. Proof of Corollary 3.1

Proof. According to Theorem 3.1, every trajectory of the foraging
model (4) attracts to a compact set C defined in (5). Thus we can
restrict the dynamics of model (4) in this compact set C. Based on
the proof of Theorem 3.2, we have the following three cases:

1. If

R0omin 1;
k1β

k2ðk1þγÞ

� �
or

k1β
k2ðk1þγÞoR0oRΔ;

then the foraging model (4) has only the non-foraging equili-
brium E0 ¼ ðk1=k2;0;0Þ which is locally asymptotically stable.
model (4) enters a compact set C and has a unique locally stable
equilibrium E0. Thus, E0 is globally stable by applying the
results of Poincare–Bendixson trichotomy in three dimensional
systems (Thieme, 1992).

2. If R041, then the foraging model (4) has the non-foraging
equilibrium E0 and the foraging equilibrium E2 where E0 is a
saddle and E2 is locally asymptotically stable. Therefore, by
applying the results of Poincare–Bendixson trichotomy in three
dimensional systems (Thieme, 1992), we can conclude that
every trajectory starting with strict positive initial condition
converges to E2, i.e., and E2 is globally stable.

3. If

max
k1β

k2ðk1þγÞ;RΔ

� �
oR0o1;

then the foraging model (4) has the non-foraging equilibrium E0

and two foraging equilibria Ei; i¼ 1;2 where both E0 and E2 are
locally asymptotically stable. This implies that the foraging
model (4) has bistability, i.e., depending on the initial condi-
tion, the trajectory may converge to the non-foraging equili-
brium E0 or the foraging equilibrium E2. □
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Appendix A. Dynamic sensitivity analysis

For model (4), we are particularly interested in quantifying how
possible changes in k1, β, k2 and γ will influence the number of
foragers in each state over time because of their predicted effects
on R0 and ~RΔ (see Table 4). Mathematically, dynamic sensitivity
analysis is done by solving a set of adjoining forward sensitivity
equations obtained by taking the partial derivatives of (4) with
respect to its component parameters (see Arriola and Hyman,
2009 for a review). We employed the ODE15s SENS_SYS extension
in MATLAB written by Garcia Molla, which calculates and inte-
grates the sensitivity equations. The output is a time-series of
model sensitivities that we normalized using Eq. (19).

We initialized system (4) at the interior foraging equilibrium
with parameters in the: (i) persistent activity region (R041), and
(ii) bistablity region ( ~RΔoR0o1) (see Fig. 3(b)). We then
introduce a constant perturbation by increasing the returning
forager death rate similar to the experimental removals described
in Pinter-Wollman et al. (2013) (i.e., dr ¼ 0:05; to20; dr ¼ 1;
tA ½20;40�).

Fig. 8(a) and (b) shows the effects of forager removal on model
dynamics. As the perturbation increases beyond t¼20, the number
of available workers in the vestibule rises initially due to insuffi-
cient interactions with returning foragers. However, as we con-
tinue to prevent foragers from returning, forager retirement rates
ultimately overtake arrival rates at the vestibule, reducing the pool
of available foragers. This happens at around t¼25. Finally, at
t¼40, all numbers increase as foragers are allowed to return to the
nest, and the system tends back towards equilibrium.

In general, the model tends to equilibrate worker availability
faster than empirically observed. This difference between model
and experiments is likely due to the model assumptions that there
is no direct recruitment from the inner nest to the vestibule.
Future work adding dynamics to the rate of worker arrival from
the inner nest (k1) might uncover further foraging regulation
mechanisms.

There are major differences between the system's response
during and after the perturbation period, depending on the
parameter region. In the persistent foraging region, the average
number of available foragers in the absence of returning foragers is
relatively higher than it is when there is activity. Conversely, in the
bistable region, the average numbers of available foragers in the
absence of returning foragers are much lower than it is when there
is activity (Fig. 8). At first glance, this result is counter-intuitive
because one might expect that colonies with persistently high
foraging levels should have larger numbers of available foragers.
However, recall that the total expected rate of forager availability
in the persistent region is always less than in the bistable region
(i.e., ϕ24ϕ1, see Fig. 2). This is not only because R0 is an
increasing function of the effective interaction rate, β) (see
Table 4), but also because forager availability is a non-decreasing
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function of R0 (14). Based on these observations, we can infer that
the equilibrium number of available foragers should be relatively
lower in the persistent region due to the increased rate of forager
recruitment.

Fig. 7(a)–(d) shows the corresponding model sensitivities for
select parameters as a function of time. The normalized sensitivity
indices (y-axis) show the expected percentage change in the
numbers of available foragers (green), activated foragers (blue) or
returning foragers (red) given a 1% increase in the focal parameter
(see Eq. (19)). Our results predict varying patterns of sensitivity for
each parameter, during equilibrium and non-equilibrium periods.
Because our model is deterministic and continuous we cannot
discuss stochasticity which would appear in a discrete model and
might affect the sensitivity of the parameters in small populations.
However, because the populations we model are large (thousands
of ants) our continuous model provides an plausible approximation
of a discrete system.

1. Fig. 7(a) shows that at equilibrium (i.e., to20; t440), increas-
ing the effective interaction rate (β) by a percent should have a
negative impact on available foragers (� 1% reduction) and a
small but positive impact on both active and returning foragers.
However, as the perturbation unfolds (i.e., 20rtr40), its
expected impact on both active and returning foragers
increases steadily and peaks near the end of the perturbation
period as the numbers of available foragers begin to increase.
As discussed previously, the initial increase in the number of
ants in the vestibule results from a reduction in forager
activation rates. These observations suggest that modulating
interaction rates in the vestibule should be particularly impor-
tant to the colony especially during a perturbation when there
might be fewer numbers of returning and available foragers.

2. Fig. 7(b) and (c) shows respectively the impacts of increasing
the worker arrival rate (k1) and the forager retirement rate (k2)
on the model's dynamics. Increasing worker arrivals always has
a positive impact on all compartments, especially during the
perturbation (Fig. 7(b)). However, the impact of k1 is generally
greater on both active and returning foragers particularly when
the model approaches equilibrium. Conversely, the effect of
increasing the forager retirement rate at foraging equilibrium is
almost negligible in all compartments (Fig. 7(c)) However, as
the perturbation unfolds, all three compartments show
increasing negative sensitivity to k2 with its largest impact on
available foragers (� 1:4% reduction). Together, these observa-
tions suggest from the colony's perspective that the joint
modulation of worker arrival and forager retirement rates will
be a key component in maintaining foraging activity especially
during a perturbation. We would expect colonies to work
towards increasing worker arrival rates during periods of high
returns, and decreasing the forager retirement rate during
periods of low returns in order to stabilize their forager
recruitment rates.

3. Fig. 7(d) shows the effects of the forager turnover rate (γ) on
the model dynamics. At equilibrium, increasing γ by a percent
will have a positive, but diminished impact on the numbers of
available and active foragers (i.e., o1%). However, as the
perturbation unfolds, its predicted impact is largest and posi-
tive for both active and returning foragers. This observation is
intuitive: when returning foragers are in decline, increasing γ
increases forager availability in the vestibule. This in turn will
have an effect on the numbers of active foragers through its
positive impact on the forager recruitment rate. Although we
assume that γ is constant, the reality is that it will likely subject
to some important feedbacks from other dynamical variables
not captured in our model such as the current work demand at
the nest which may alter forager behavior once inside, and

influence how quickly they become re-available for recruit-
ment. These types of feedbacks will impact the sensitivity
patterns observed during a perturbation.
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