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Social network analysis provides a broad and complex perspective on animal sociality that is widely applicable to almost any species. 
Recent applications demonstrate the utility of network analysis for advancing our understanding of the dynamics, selection pressures, 
development, and evolution of complex social systems. However, most studies of animal social networks rely primarily on a descriptive 
approach. To propel the field of animal social networks beyond exploratory analyses and to facilitate the integration of quantitative 
methods that allow for the testing of ecologically and evolutionarily relevant hypotheses, we review methodological and conceptual 
advances in network science, which are underutilized in studies of animal sociality. First, we highlight how the use of statistical model-
ing and triadic motifs analysis can advance our understanding of the processes that structure networks. Second, we discuss how the 
consideration of temporal changes and spatial constraints can shed light on the dynamics of social networks. Third, we consider how 
the study of variation at multiple scales can potentially transform our understanding of the structure and function of animal networks. 
We direct readers to analytical tools that facilitate the adoption of these new concepts and methods. Our goal is to provide behavioral 
ecologists with a toolbox of current methods that can stimulate novel insights into the ecological influences and evolutionary pressures 
structuring networks and advance our understanding of the proximate and ultimate processes that drive animal sociality.

Key words: animal social networks, exponential random graph modeling, spatial behavior, social network analysis, temporal 
change, triadic motifs, variation.

IntroductIon
Despite its long-term prevalence in sociology and physics 
(Wasserman and Faust 1994; Watts and Strogatz 1998; Barabasi 
and Albert 1999; Newman 2003), behavioral ecologists have 

only recently started to apply social network theory to investigate 
the ecological function and evolutionary development of  social 
behavior (Krause et  al. 2007; Croft et  al. 2008; Wey et  al. 2008; 
Sih et  al. 2009; Croft et  al. 2011). Network theory provides a 
holistic way to connect the functionality of  a group to the behavior 
of  its constituent individuals (Alon 2003; Fewell 2003). Within 
a network framework, individual animals are modeled as nodes Address correspondence to N. Pinter-Wollman. E-mail: nmpinter@ucsd.edu. 
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within a group of  more than 2 individuals and represented as a 
graph or network. Individuals are connected with links based on 
their co-occurrences in space or on their behavioral interactions. 
The links can be directed if  the interaction has a clear instigator 
and a receiver or undirected if  the interaction is in no particular 
orientation. Links can also be weighted, indicating the number 
or probability of  interactions among individuals, or unweighted 
(binary), without information about the strength of  the interaction 
(for more details, see Wey et  al. 2008). The emergent patterns of  
interactions among individuals, occurring dynamically across space 
and time, can fundamentally shape the fitness of  individuals within 
social groups and thus impact the demography and structure of  
populations (Lea et  al. 2010; Barocas et  al. 2011; Formica et  al. 
2012; Wey and Blumstein 2012).

Network methods help characterize social structures in new ways, 
providing an expanded opportunity to understand the ecological 
function and evolution of  complex sociality in animals. However, 
current research utilizing a social network approach in behavioral 
ecology predominantly focuses on descriptive approaches that iden-
tify the structure of  animal interactions but do not necessarily test 
hypotheses about function of  interaction patterns. To understand the 
ecological and evolutionary processes underlying social network for-
mation and organization, we need to compare social networks across 
species and study how changes in the environment, such as resource 
availability or population density, or during an animal’s ontogeny, 
such as dispersal events, influence network structure. To advance the 
field of  animal social networks from describing structures to testing 
ecologically and evolutionarily relevant hypotheses, current research 
needs to capitalize on theoretical, methodological, and analytical 
developments in parallel disciplines, such as epidemiology (Bansal 
et  al. 2007), and the social (Snijders and Doreian 2010, 2012) and 
physical sciences (Newman 2003). Bringing in new techniques for 
analyzing animal social networks from the previously mentioned 
disciplines will allow behavioral ecologists to address novel questions 
about the formation and dynamics of  animal social structures.

Here, we highlight methodological advances and conceptual 
challenges in the study of  animal social networks, which are under-
utilized by the current behavioral ecological literature, and suggest 
how further development of  these ideas will significantly advance 
the field. We divide this review into 3 broad topics. First, we sum-
marize how methodological advancements, including network 
modeling and investigation of  triadic motifs, can be used for sophis-
ticated analyses and comparisons of  animal social networks to illu-
minate mechanisms underlying network structures. Next, we focus 
on conceptual challenges and provide suggestions for incorporat-
ing temporal dynamics and spatial constraints into animal network 
studies, which we see as critical for understanding the processes that 
structure and maintain networks. Finally, we consider network vari-
ation at the individual, population, and species scales and describe 
how increased understanding of  the causes and consequences of  
this variability can provide insights into the ecological influences 
and evolutionary pressures on networks. We hope to reenergize 
the use of  social network theory in behavioral ecology by moving 
forward from introducing basic network methods (Wey et al. 2008) 
and highlighting technical constraints (Croft et al. 2011). We add to 
previous reviews of  the topic (Krause et al. 2007; Sih et al. 2009) by 
suggesting new approaches and statistical tools that will address the 
biological questions social network theory can elucidate.

In each section, we include examples of  how to apply these 
approaches and recommend relevant analytical tools that will facili-
tate the adoption of  these advances (Table 1). We include examples 
of  studies that have already implemented these concepts to reveal 

their current breadth across taxonomic groups (Table  2). In con-
clusion, we highlight unanswered questions that will be the focus 
of  this next progression in socio-ecological research. Our goal 
is to summarize major methodological and theoretical advances 
in social network analysis to ensure behavioral ecologists are flu-
ent with the available tools, analytical approaches, and underlying 
theory required to address questions regarding the generation and 
function of  social complexity.

MethodologIcal advances: 
understandIng the Processes that 
underlIe network structures
Association patterns among individuals are generally nonrandom 
(Krause and Ruxton 2002; Krause et  al. 2007). However, we 
have only a few functional explanations for why social networks 
are structured the way they are (one example is life-history stage; 
McDonald 2007). Advances in statistical methods suitable for 
network data can be used to better understand the factors that 
determine the structure of  animal social networks. Here, we discuss 
how statistical network modeling and triadic motifs can be used to 
examine the mechanisms that underlie network structures and the 
ultimate function of  networks.

Moving beyond descriptive statistics

To understand which physical and biological processes shape non-
random social networks, a statistical network modeling approach 
can be used. In the past, researchers have examined network struc-
tures by comparing descriptive structural statistics (e.g., node degree 
and transitivity) between observed and randomly constructed 
networks (Croft et  al. 2008). This type of  statistical approach is 
easy to perform and can provide valuable insights into how the 
observed social network is different from a particular null hypoth-
esis as expressed by a set of  random networks (Croft et  al. 2011). 
However, most if  not all biological networks are nonrandom; thus, 
using random networks as null models may oversimplify the real-
world complexities of  many animal social systems. The next chal-
lenge is to decipher why particular nonrandom structures occur. 
Multiple deterministic and stochastic processes likely contribute to 
social network structure, and the effects of  these processes cannot 
be rigorously teased apart through exploratory analyses of  descrip-
tive statistics alone. Advanced statistical modeling techniques offer 
a potential solution to evaluating the synergistic effects of  multiple 
processes on animal social network structure.

Exponential random graph modeling (ERGM, or p* modeling) is 
a well-developed statistical technique, used extensively in the social 
sciences, that enables examination of  the underlying mechanisms 
of  network factors and processes that generate nonrandom network 
structures (Anderson et al. 1999; Robins et al. 2007). ERGM can be 
used to explore how network structures emerge from external factors 
and test how networks are shaped by their function. ERGM, closely 
related to logistic regression, uses stochastic modeling to determine 
the probability that a social link exists among individuals based on 
a set of  predictor variables (Robins et  al. 2007). Explanatory vari-
ables can take a variety of  forms including individual attributes (e.g., 
age, social status, and reproductive condition), dyadic covariates 
(e.g., spatial distance, relatedness, and past interactions), and struc-
tural features (e.g., triad closure) (Goodreau et al. 2009). Social links 
can be directed or undirected in ERGM but must be binary (i.e., 
unweighted). ERGM (implemented in the R package statnet) is par-
ticularly suitable for the analysis of  network data because it incorpo-
rates the inherent dependence among individuals in its estimation 
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methods. The main statistical benefit of  employing an ERGM 
approach is the ability to rigorously evaluate how multiple covari-
ates contribute to the overall social network structure. For example, 
researchers can use ERGM to examine how multiple covariates 
such as age, social status, spatial distance, and relatedness differen-
tially influence the social network structure of  a study population or 
group. However, this approach has not yet been applied to under-
stand what processes shape animal social systems (Table 2).

Multiple Regression Quadratic Assignment Procedure (MRQAP) 
is another method that can be used to investigate the synergistic 
effects of  multiple factors on network structure (Dekker et al. 2003; 
Dekker et al. 2007; Croft et al. 2011). In contrast to ERGM, MRQAP 
can be used with weighted (i.e., nonbinary) networks, in which the 
strength of  the links is known because both the dependent and 
independent matrices can be continuous measures. MRQAP tests 
have been used to determine social affinity patterns while controlling 
for factors such as spatial location, sex, and relatedness (Mann 
et al. 2012) and to test whether similarity in age, sex, or relatedness 
predicted networks of  affiliative and agonistic interactions (Wey and 
Blumstein 2010). MRQAP can be implemented using UCInet and 
the sna R package.

In an effort to move the field of  animal social networks beyond 
the descriptive stage, we encourage the adoption and development 
of  the above mentioned, as well as novel statistical network mod-
eling techniques. In doing so, behavioral ecologists will enhance 
their understanding of  the mechanisms underlying the structures 
of  animal social networks and the robustness of  their conclusions.

Deconstructing networks

Another strategy for examining the processes that shape animal social 
networks is comparing the networks of  various species to understand 
how ecological pressures and evolutionary history structure interac-
tion patterns. One of  the major challenges in applying a compara-
tive approach to network studies is deciding which measures of  
network structure can be logically compared across multiple, poten-
tially widely divergent, species and networks that vary in size and 
density (Croft et  al. 2008). An increasingly popular approach is to 
deconstruct networks into subcomponents and compare the relative 
frequencies of  these subcomponents across networks (Holland and 
Leinhardt 1976; Milo et al. 2002; Faust 2007). This class of  analysis, 
commonly termed “motif  analysis,” allows a bottom-up examination 
of  network structure and function and facilitates comparison across 
networks to reveal shared, general organizing principles.

The motif  method deconstructs a network into its constituent 
subgraphs, that is, subsets of  connected nodes within the network 
(Figure 1A). A network of  any size can be deconstructed into sets of  
dyad (2-node), triad (3-node), or n-node subgraphs, each of  which 
represents a unique pattern of  interactions among individuals. 
Such patterns are relevant in behavioral ecology, for example, when 
considering dominance networks in which transitive triads (A→B, 
B→C, and A→C, Figure 1B) represent a linear hierarchy among 
3 individuals, whereas cyclical triads (A→B, B→C, and C→A, 
Figure 1B) represent the absence of  a clear hierarchy (McDonald 
and Shizuka 2013). The frequency of  each type of  subgraph can 
then be compared with those frequencies in other empirical net-
works, or various random networks, to illuminate the underlying 
function of  the observed network structure (Milo et al. 2002). Such 
an approach has been successfully applied to the comparison of  the 
frequency of  cyclical and transitive triads across multiple empiri-
cal networks, revealing that animal dominance networks are orderly 
and tend to have fairly high temporal stability of  the rank orders 

(McDonald and Shizuka 2012). Furthermore, the type of  subgraph 
structure each individual participates in may explain its role in the 
network. In a directed 3-node network, there are 16 possible con-
figurations of  triads, ranging from null triads (no interactions) to 
completely reciprocal relations between all 3 nodes (Figure  1B). 
Because the number of  subgraphs increases exponentially with 
their size, analysis of  subgraphs larger than 3 or 4 nodes is cur-
rently prohibitory because of  computational demands. However, 
because the goal of  motif  analysis is to compare among networks 
using tractable components, the size of  the compared components 
is not relevant, as long as they are biologically meaningful.

The study of  subgraphs of  3 nodes (triads) is particularly well 
suited for examining directed social interactions in animals, for 
example, in the context of  dominance relations and information 
exchange. The triad analysis approach was first conducted by soci-
ologists to study patterns of  transitivity in human friendship choices, 
that is, the likelihood that if  A chooses B as a friend and B chooses 
C, A  also chooses C (Davis et  al. 1971; Holland and Leinhardt 
1976). Transitivity of  social relations is also of  interest to behavioral 
ecologists studying dominance hierarchies in animal groups. For 
example, a “linear” dominance hierarchy is one in which all triadic 
dominance relations are transitive, and “linearity” indices are used 
to measure how closely a group conforms to a linear hierarchy (De 
Vries 1995). However, measures of  linearity become unreliable when 
not all individuals interact, thus creating “missing data” (Shizuka 
and McDonald 2012). Focusing directly on the transitivity of  triadic 
relations can yield alternative measures of  dominance hierarchy 
structure that are resilient to missing data (Shizuka and McDonald 
2012) and reveal previously underappreciated levels of  similar-
ity among dominance hierarchies of  different taxa (McDonald 
and Shizuka 2013). Recently, the analysis of  triadic configurations 
or “triadic motifs” has also been applied to identify differences in 
information flow among a variety of  complex biological, technologi-
cal, and sociological networks (Milo et al. 2002, 2004; Faust 2007; 
Stouffer et  al. 2007). Examining triadic motifs in information net-
works of  animals, for example, the interactions among social insects 
in a colony, can uncover the prevalence of  triads that facilitate effi-
cient information flow, thus illuminating the mechanisms underlying 
complex group behaviors (Waters and Fewell 2012).

Most network analysis software, including R packages “igraph” 
(Csardi and Nepusz 2006) and “statnet” (Handcock et  al. 2003), 
provide methods for counting the frequencies of  triadic configura-
tions (called “triad census”). These tools can be used in combina-
tion with custom randomization procedures to carry out triad motif  
analysis (Shizuka and McDonald 2012 provide example codes). 
Other software specifically designed for motif  analysis are also 
widely available: Mfinder (Kashtan et al. 2004), MAVisto (Schreiber 
and Schwöbbermeyer 2005), and FANMOD (Wernicke and Rasche 
2006). In all cases, we advocate careful consideration of  randomiza-
tion procedures to derive statistical metrics because the choice of  the 
randomization design determines the null hypothesis, thus affecting 
the interpretation of  the results (Artzy-Randrup et al. 2004).

teMPoral and sPatIal dynaMIcs: 
concePtual challenges In the study 
of anIMal socIal networks
Interactions among animals are dynamic processes, yet many stud-
ies of  animal social networks examine static structures. Animals 
may modify their social interactions in response to changes in 
external conditions such as climate, predation pressure, and social 
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setting. Some of  these changes may be caused by the animals them-
selves as they move across habitats, potentially altering their own 
social network structure and dynamics. It is therefore important 
to consider the temporal dynamics and spatial attributes influenc-
ing animal social networks to better understand and identify fac-
tors affecting sociality. Here, we discuss the temporal and spatial 
aspects that should be considered when investigating animal social 
networks and suggest methods for addressing these challenges.

Temporal dynamics

Examining changes to the social structure of  animals over time 
and across ecological settings can elucidate drivers and functions of  
social organization (Hinde 1976; Whitehead 2008). For example, 
temporal changes in network structure may affect the dynamics of  
processes such as the spread of  disease within a population (Cross 
et al. 2004; Naug 2008); social interactions early in life predict later 
social status (McDonald 2007); and environmental changes may 
determine emergent properties of  animal interactions such as hier-
archical group structuring (Wittemyer et  al. 2005; de Silva et  al. 
2011). All of  these dynamics shape individual interactions and con-
sequently influence population organization. However, only a few 
studies examine the temporal dynamics of  social networks (Table 2). 
Here, we summarize 2 main approaches to quantify and test aspects 
of  network temporal dynamics, and highlight tools that can be used 
to address questions regarding network changes over time. We draw 
heavily from previous work in the social sciences, where these meth-
ods have been developed and extensively applied to the study of  
human social structure (Snijders and Doreian 2010, 2012).

The first approach to studying the temporal dynamics of  net-
works is the discrete “snapshot” approach. Data collected over 
time are aggregated within relevant intervals to generate networks. 
This procedure yields a series of  static representations of  the social 
structure (Figure  2A–C). Critically, sampling must be carried out 
and partitioned at temporal resolutions appropriate for the process 
of  interest. Although there may be some biological (Sundaresan 
et  al. 2007; Whitehead 2008) or ecological (de Silva et  al. 2011; 

Holekamp et  al. 2012) basis for choosing suitable time intervals, 
they depend heavily on the biological questions asked. In addition, 
species vary in the timescale on which behavior changes, for exam-
ple, the time interval required to extract meaningful information 
about ant networks (Blonder and Dornhaus 2011; Pinter-Wollman 
et al. 2011; Waters and Fewell 2012) is very different from that for 
elephant networks (Wittemyer et  al. 2005; Pinter-Wollman et  al. 
2009; de Silva et al. 2011). Multiple time frames may be tested to 
examine which most accurately represents the scale of  change rel-
evant to the question being asked (Waters and Fewell 2012).

Tools for longitudinal analyses based on the discrete snapshot 
approach are relatively well developed. Network dynamics can be 
visualized graphically using software such as Visone (http://visone.
info/), which allows users to create customized movies of  temporal 
changes among static networks (Brandes and Wagner 2004). Social 
network change detection (SNCD) can be used to identity when net-
work metrics (e.g., betweenness, transitivity) exhibit statistically sig-
nificant structural change between time periods (McCulloh 2009). 
SNCD, available through the software program ORA (http://www.
casos.cs.cmu.edu/projects/ora/), may be used to determine when 
events such as breeding, dispersal, and environmental change first 
begin to impact animal social network structure. Similarly, hidden 
Markov models can identify structural change points in longitudi-
nally collected behavioral data (Rabiner 1989). Discrete networks 
can also be analyzed with statistically powerful methods such as 
stochastic actor-oriented modeling (SAOM, implemented in the R 
package, RSiena). SAOM examines how individual-based combi-
nations of  network processes and covariates influence the probabil-
ity of  animals changing their network links and attributes over time 
(Burk et al. 2007; Snijders et al. 2010).

The second approach for studying network dynamics is the con-
tinuous approach that maintains data in streams of  time-stamped 
observations (Bender-deMoll and McFarland 2006; Berger-Wolf  
and Saia 2006; Palla et al. 2007; Tantipathananandh and Berger-
Wolf  2009; Blonder and Dornhaus 2011; Blonder et  al. 2012). 
Rather than aggregating data to consider structural changes 

Figure 1 
(A) A directed network of  25 individuals linked by 39 interactions. Two triad subgraphs have been highlighted: a feed-forward loop (dashed dark) and a fully 
connected triad (dotted light). (B) The 16 possible triadic configurations in a directed network. Circles represent individuals and arrows indicate a directed 
social interaction.
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Behavioral Ecology

between time frames, these techniques focus on the order and tim-
ing of  changes in relationships between nodes (Bender-deMoll and 
McFarland 2006). The continuous approach can provide detailed 
insight into situations where the timing and order of  interactions is 
critical, such as diffusion of  behaviors (Boogert et al. 2008) or infor-
mation flow (Blonder and Dornhaus 2011; Figure 2D). Currently, 
the tools based on the continuous approach are less accessible, 
less widely developed, and more limited in their utility than those 
based on the discrete approach. One exception is the R package 
“timeordered” developed by and for behavioral ecologists (Blonder 
and Dornhaus 2011). Despite current limited availability of  analy-
sis packages, continuous analyses offer exciting new opportunities 
because they allow behavioral ecologists to model networks in a 
truly dynamic fashion. The importance of  temporal dynamics in 

animal social networks may encourage behavioral ecologists to fur-
ther develop analytical approaches and tools that facilitate rigorous 
hypothesis testing concerning patterns of  temporal change.

Spatial constraints

Animal social networks operate and evolve within spatial con-
texts (Barrat et  al. 2005; Ohtsuki et  al. 2006). The link between 
spatial and social dynamics has long been fundamental in the 
study of  geography (Hägerstrand 1970) and is an emerging theme 
in the study of  human networks (Barrat et  al. 2005; Lauw et  al. 
2005; Crandall et al. 2010; Barthelemy 2011; Expert et al. 2011). 
Spatial dynamics are important to consider when examining ani-
mal sociality because of  the changes in spatial behavior during an 
animal’s life, for example, during natal dispersal or migration, that 

Figure 2 
Examples of  temporal dynamics across animal social networks. (A) Networks in successive 2-year timeblocks of  long-tailed manakins (Chiroxiphia linearis). 
Permission from the National Academy of  Science, McDonald DB. 2007. Predicting fate from early connectivity in a social network. Proc Nat Acad Sci 
USA. 104:10910–10914. Photo by Christine Fisher. (B). Network dynamics among adult female Asian elephants (Elephas maximus) in the dry and wet seasons. 
Originally published by BioMed Central, “de Silva S, Ranjeewa ADG, Kryazhimskiy S.  2011. The dynamics of  social networks among female Asian 
elephants. BMC Ecol. 11:17.” Photo by Uda Walawe Elephant Research Project. (C) Network dynamics among adult and subadult spotted hyenas (Crocuta 
crocuta) during periods of  low and high prey abundance. Permission from Wiley, “Holekamp KE, Smith JE, Strelioff CC, Van Horn RC, Watts HE. 2012. 
Society, demography and genetics in the spotted hyena. Mol Ecol. 21:613–632.” Photo by Kay E. Holekamp. (D) Information flow among ants (Temnothorax 
rugatulus) represented as (i) links over time, (ii) time-aggregated networks, and (iii) time-ordered networks. Permission from PLOS, “Blonder B, Dornhaus 
A. 2011. Time-ordered networks reveal limitations to information flow in ant colonies. PLoS One. 6:e20298.”
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potentially affect its social associates. Furthermore, when individu-
als hold exclusive territories, space use may play a crucial role in 
defining social units, and by extension, network clusters or mod-
ules. Spatial proximity is important for maintaining cooperation 
(Nowak et al. 1994), and fission-fusion dynamics are defined by the 
spatiotemporal cohesion of  individuals (Aureli et al. 2008). Recent 
technological innovations in tracking devices are revolutionizing 
the way we collect social association data, providing detailed infor-
mation on the location of  individual animals at high spatial and 
temporal resolution (Pinter-Wollman and Mabry 2010; Haddadi 
et al. 2011; Aplin et al. 2012; Psorakis et al. 2012; Rutz et al. 2012). 
However, integrative studies of  space use and social interactions are 
still fledgling topics in the empirical studies of  behavioral ecology 
(Table 2).

One hindrance to the advancement of  studying the spatial 
constraints on social networks is the difficulty in separating the 
two. Except when networks are constructed based on direct behav-
ioral interactions (Figure  2A,D), characterizations of  a social net-
work often rely on the assumption that spatial proximity implies 
social affiliation (Whitehead 2008; Figure  2B,C). This widely 
applied technique, termed “the gambit of  the group” (Whitehead 
and Dufault 1999), is derived from the realistic expectation that 
among nonhuman animals, individuals must be in close physical 
proximity to interact. Nevertheless, this assumption suffers from 
recognized weaknesses in that it ignores the nonsocial spatial factors 
affecting animal movements and co-habitation, which bring indi-
viduals to the same location (e.g., a resting site) without necessitat-
ing interactions. Furthermore, this approach suffers from observer 
biases originating from the need for real-time “judgment calls” 
about what constitutes a group (Whitehead and Dufault 1999; 
Whitehead 2008).

These issues in data collection are carried forward in statistical 
frameworks meant to test for the presence of  social structure. Null 
models derived from permutation approaches are commonly used 
to assess whether individuals interact with one another more than 
expected at random (Bejder et  al. 1998; Whitehead et  al. 2005; 
Whitehead 2008; Sundaresan et  al. 2009). However, such permu-
tation tests assume that any two individuals in the population can 
co-occur in the same group, without accounting for spatial factors, 
such as the presence of  resources, movement corridors, and so on. 
Such geographical attributes may attract individuals to the same 
location or prevent them from ever meeting, regardless of  social 
preference, rendering results from a naive null model difficult to 
interpret. More stringent null hypotheses should take into account 
the probability that 2 randomly drawn individuals encounter one 
another relative to their spatial configuration (as in Pinter-Wollman 
et al. 2009). Furthermore, testing social affiliation data against spa-
tially explicit null models that account for patterns of  space use 
could reveal associations that arise simply because individuals are 
attracted to similar geographical features. A general procedure that 
incorporates spatial and temporal variability in space use at the 
population level has not yet emerged but is an area ripe for explora-
tion (Psorakis et al. 2012).

Algorithms for detecting communities provide some basis for 
distinguishing space use from social preference at levels of  organi-
zation larger than a dyad. There are now numerous methods for 
partitioning networks into subcomponents (reviewed by Porter et al. 
2009 and Fortunato 2010), many of  which rely on the topologi-
cal features of  the network itself, such as denser connections within 
communities than among communities. Such algorithms have been 
successfully used to discriminate social units in populations with 

considerable spatial overlap that might have otherwise been consid-
ered a single large social unit (Oh and Badyaev 2010; de Silva et al. 
2011; Kerth et al. 2011; Mourier et al. 2012). However, for behav-
ioral ecologists, many standard community-detection algorithms 
still provide an incomplete understanding of  spatial drivers because 
they do not use spatiotemporal data per se. Recent approaches 
that do incorporate spatial data explicitly in defining social struc-
ture (such as those used by Lauw et al. 2005; Crandall et al. 2010; 
Expert et  al. 2011; Psorakis et  al. 2012) deserve greater attention 
from behavioral ecologists. By incorporating data on the distri-
butions and dynamics of  ecological variables, these methods can 
provide a more complete understanding of  how putatively “social” 
networks depend on, or can be distinguished from, these underlying 
ecological factors.

In parallel, the branch of  network analysis involving statistical 
modeling, such as SAOM and ERGM (Snijders et al. 2010), offers 
a promising approach to determining whether individuals in the 
network are responding to spatial and/or social preferences. For 
example, ERGM and SAOM can include both spatial (e.g., distance 
between individuals, habitat attributes, and so on) and nonspatial 
covariates in the statistical model (see above for more information 
on these techniques). Frameworks for evaluating the effect of  social 
preference together with other factors governing contact patterns 
are also independently emerging from the study of  collective move-
ment in humans and animals (Couzin and Krause 2003; Getz and 
Saltz 2008; Bode et al. 2011a, 2011b). As the popularity of  social 
network analyses grows, the consideration of  explicit spatial infor-
mation when generating networks and testing hypotheses is an area 
in need of  further development in the study of  nonhuman animals.

varIatIon wIthIn and aMong 
networks: evolutIon and ecology 
of socIal networks
Evolution acts on variation. When studying how natural selection 
acts on social network structure, variation is important at multiple 
levels, both within and among networks. Variation in connectiv-
ity or other centrality measures among individuals comprising a 
network influences how it operates (Williams and Lusseau 2006; 
Pinter-Wollman et  al. 2011). Variation in network structure and 
function among social groups within a population influences how 
those groups adjust to various environments (Gordon et al. 2011), 
potentially affecting the survival and reproductive success of  indi-
viduals within the group and the relative success of  each group 
within the population (Royle et al. 2012). Species differences in net-
work structures and dynamics likely reflect the selective pressures 
under which they evolved. Thus, network structure and function 
may be targets of  selection in ways often overlooked by evolution-
ary models. To realistically explore the evolutionary drivers of  
social systems and understand the various levels of  selection acting 
on these systems, intraspecific comparisons within and across popu-
lations and interspecific comparisons of  social networks are needed.

Variation among individuals within a network

The notion that key players, such as dominant individuals (Rowell 
1974) or leaders (Couzin et  al. 2005), may have disproportional 
effects on social structure has long been a hallmark concept in 
behavioral ecology. Traditional computational tools focus pri-
marily on the outcomes of  dyadic interactions between key play-
ers and other members of  the group. However, the use of  social 
network theory extends these traditional approaches by allowing 

251

 at U
niversity of C

alifornia, San D
iego on M

arch 11, 2014
http://beheco.oxfordjournals.org/

D
ow

nloaded from
 

http://beheco.oxfordjournals.org/
http://beheco.oxfordjournals.org/


Behavioral Ecology

behavioral ecologists to examine the role of  key individuals, or key 
subgroups of  individuals, on the emergent structure and function 
of  the groups in which they reside. The implementation of  new 
network approaches in the study of  animal behavior highlights the 
important role that individual variation plays in network processes 
such as information flow (Lusseau and Newman 2004; Flack et al. 
2006; Smith et al. 2010; Pinter-Wollman et al. 2011). Furthermore, 
studies that examine how variation among individuals in attributes 
such as age and sex affect their position in the network (Table 2) are 
beginning to shed light on how group composition may influence 
its success. However, further work is needed to understand how 
variation and group structure influence evolutionary processes.

Exploring the mechanisms that underlie individual variation 
within a network will advance our understanding of  how social 
groups operate. However, only little is known about the mecha-
nisms that produce variation in social networks or even whether 
individuals persist in their social roles over time and across situa-
tions (Sih et  al. 2009; Wilson et  al. 2013). Although genetic and 
developmental processes may cause individuals to occupy persis-
tent roles within a network, network structure must also respond 
to changes in the physical environment. Thus, ecological and social 
changes may act in concert to affect which individuals occupy cen-
tral or dominant roles within the group. For example, when certain 
individuals are removed from a group, others may take their social 
role (Robson and Traniello 1999).

One fruitful way in which behavioral ecologists may examine 
the effects of  variation among individuals on network processes 
is by using “knockout experiments.” In such experiments, certain 
individuals or interactions are removed from the network to exam-
ine how they affect network processes (Flack et  al. 2006). These 
experiments allow for the investigation of  the differential effects of  
removing various system components on the robustness and func-
tionality of  the social network. However, removals are not always 
feasible, for example, in field studies, when working with vulnerable 
species, or when networks change rapidly. In such cases, computer 
simulations of  removals or natural removals, such as those attrib-
uted to natural mortality or dispersal events, offer opportunities to 
understand the additive and nonadditive effects of  certain individu-
als on group-level structure and function. Although the results of  
such simulated removals must be interpreted with care, these tools 
have been underutilized by behavioral ecologists aiming to con-
serve species. Application of  network theory could inform manage-
ment decisions through inferences about the resilience of  natural 
populations to anthropogenic effects (as in Williams and Lusseau 
2006). What determines whether removed central individuals are 
replaced and which individuals step in as replacements are still 
open questions.

Variation among populations and species

As the study of  animal social networks expands, broad-scale com-
parisons of  network structure within and across species will become 
possible. Comparing the similarities and differences among animal 
networks provides a framework for studying the diversity of  system-
level functionality. We are not the first to call for comparing net-
work measures across species and populations (Krause et al. 2007). 
Indeed, studies comparing the social networks of  similar species that 
live in different environments have revealed adaptive social structures 
shaped to the environment in which each species live (Sundaresan 
et al. 2007; Kasper and Voelkl 2009; de Silva and Wittemyer 2012). 
As the field of  animal social networks matures, more opportuni-
ties for comparative studies across taxa will arise (Table 2). As more 

studies of  closely related species become available, we suggest com-
paring metrics of  social structure across phylogenies to increase the 
breadth of  questions about the evolution of  sociality. To facilitate 
comparisons of  social networks across populations and species, it is 
critical to standardize sampling methods and to facilitate data shar-
ing. Other fields have already made great strides that allow research-
ers to use large-scale, collaboratively maintained, databases for 
comparative work (e.g., microarray data (Brazma et  al. 2001) and 
speech corpora (LDC corpus catalogue, http://www.ldc.upenn.
edu/) while some fields utilize universal measures (e.g., physiologi-
cal studies of  scaling laws). It is time that behavioral ecologists who 
examine animal social networks establish standards for collecting 
and storing social network data to enable large-scale comparisons 
across systems that are necessary for advancing our understanding 
of  the structure and function of  these networks.

Standardizing network data is not straightforward and will 
require the consideration of  many factors. For example, the fre-
quency and time frame of  data collection, network size, and even 
what constitutes a link among individuals are all factors that may 
vary among studies and will affect the ability to compare among 
them. Furthermore, the function of  the group in each species will 
determine which biological questions may be answered using a 
comparative approach. To allow for comparison among networks, 
we emphasize the need to record individual-based data in a spa-
tially and temporally explicit manner. So, instead of  storing data as 
interactions or as group affiliation, each individual observed should 
be recorded separately, with a time stamp and location from which 
network data can later be constructed using various spatiotemporal 
filters to define an interaction. Moving forward toward collabora-
tions and comparative studies, one useful tool may be sharing social 
network data in centralized repositories such as the Dryad Digital 
Repository (http://datadryad.org/) (e.g., Holekamp et al. 2012). If  
these databases include proper documentation of  collection meth-
ods, and assumptions made by the observer, each user will then be 
able to choose only those networks that are relevant to the biologi-
cal question at hand. These are only some suggestions to begin the 
process of  standardizing network data. Further work is needed to 
develop and establish tools that will facilitate comparative studies 
on the evolution of  social behavior.

conclusIons
The study of  animal social networks is rapidly expanding. Social 
network analysis is being applied to a wide variety of  taxa, and 
many new analysis methods are constantly being developed, 
adopted, and adapted to advance our understanding of  animal 
sociality. Although novel descriptions of  social structure in species 
that are as yet unstudied will continue to expand the foundations 
of  the field, behavioral ecologists have now accumulated a vast 
body of  data with which more general hypotheses about networks 
can be tested. In this review, we have summarized recent method-
ological and conceptual advancements that we believe will be use-
ful for furthering our understanding of  animal social structure. We 
aggregated the analytical tools reviewed in Table  1 and a sample 
of  studies that incorporate these methodological and conceptual 
advancements in Table  2. We found that many studies already 
consider individual variation, in one form or another, and to a 
lesser extent, temporal dynamics, and spatial constraints. There is 
a striking paucity of  studies utilizing statistical network modeling 
and triadic motifs to examine animal social networks and very few 
cross-species comparisons (Table 2).
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Broader use of  the advancements we describe will allow us to test 
complex hypotheses about the function, mechanism, development, 
and evolution of  animal sociality. In summarizing these advances 
and identifying areas in need of  attention, we hope to provide 
researchers with a toolbox of  up-to-date methods that can be used 
to spur new research programs, further development of  network 
analysis methods, and progress our understanding of  the proximate 
and ultimate processes that shape animal sociality.
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