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The trade-off between exploiting known resources and exploring for new ones is a complex decision-
making challenge, particularly when resource patches are variable in quality and heterogeneously
distributed in the landscape. Social insect colonies navigate this challenge, in the absence of centralized
control, by allocating different individuals to exploration or exploitation based on variation in individual
behaviour. To investigate how heritable differences in individual learning affect a colony's collective
ability to locate and choose among different quality food resources, we develop an agent-based model
and test its predictions empirically using two genetic lines of honey bees (Apis mellifera), selected for
differences in their learning behaviour. We show that colonies containing individuals that are better at
learning to ignore unrewarding stimuli are worse at collectively choosing the highest-quality resource.
This work highlights how differences in individual behaviour may have unexpected consequences for the
emergence of collective behaviour.

© 2021 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
Fitness strongly depends on an animal's ability to find resources.
However, animals often face trade-offs between exploiting known
resource patches and exploring for new ones. How animals resolve
this trade-off is influenced by the characteristics of the environ-
ment, such as how resources are distributed spatially in the land-
scape (Anderson, 2001; Hart, 1981; Hewitson, Dumont, & Gordon,
2005; Stephens & Krebs, 1986) and the variability of resource
quality (Charnov, 1976; Kohlmann & Risenhoover, 1998;
McNamara, 1982). If most resource patches are similar in quality,
organisms should persist in known patches, as long as those
patches remain sufficiently profitable (Charnov, 1976) because
exploration is unlikely to yield something better. However, if
resource patches are highly variable in quality, it is beneficial to
invest in exploring the environment to increase the chances of
finding and exploiting the most rewarding resources.

How an individual balances time between exploration and
exploitation can be influenced by how they learn. Within species,
there are often differences among individuals in learning
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characteristics, including learning speed (Chittka, Dyer, Bock, &
Dornhaus, 2003; Couvillon, Degrandi-Hoffman, & Gronenberg,
2010), accuracy (Chittka et al., 2003) and the ability to reverse
learned associations (Chandra, Hosler, & Smith, 2000). Because of
cognitive constraints, individuals often covary in these learning
abilities, such that ‘fast’ learners are good at quickly focusing in on
relevant stimuli, at the cost of being less accurate or flexible in their
decision making, while ‘slow’ learners make decisions more accu-
rately and with greater flexibility (Bitterman, Menzel, Fietz, &
Schafer, 1983; Mazza, Eccard, Zaccaroni, Jacob, & Dammhahn,
2018; Sih & Del Giudice, 2012; Tait & Naug, 2020).

This variation among individuals may be maintained partly
because different learning styles are beneficial in different envi-
ronments. When resources differ in quality, organisms must decide
when to accept patches they find and when to continue searching
for better ones. Individuals that learn faster and ignore irrelevant
information may be better at quickly exploiting resources (Chittka,
Skorupski, & Raine, 2009; Sih & Del Giudice, 2012) and therefore
perform better when all patches are similar. On the other hand,
individuals that learn slowly and incorporate new information
more readily may spend more time exploring and therefore be
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better at choosing the best available resources when patches differ
substantially in quality (Guillette, Hahn, Hoeschele, Przyslupski, &
Sturdy, 2015; Guillette, Reddon, Hoeschele, & Sturdy, 2011;
Katsnelson, Motro, Feldman, & Lotem, 2011; Sih & Del Giudice,
2012). These differences among individuals in decision-making
strategy may also be related to other elements of personality,
such as the boldeshy continuum, in addition to differences in
learning ability (Sih, Bell, & Johnson, 2004).

Animals living in social groups have the unique ability to engage
in exploration and exploitation simultaneously by allocating each
of these tasks to different individuals. In eusocial insects with
irreversible queen and worker castes, the colony tends to be the
unit of selection (Seeley, 1997). Differences in learning among
workers in a colony can enhance the colony's foraging success,
because different individuals can specialize in either locating re-
sources or exploiting them. In a honey bee colony, a small fraction
of foragers act as scouts, who specialize in searching for new food
resources, while the rest of the foragers exploit these resources
(Biesmeijer & de Vries, 2001; Seeley, 1983). Scouts share informa-
tion about the location (Dyer, 2002; von Frisch, 1967), odour
(Farina, Grüater, & Díaz, 2005; Farina, Grüter, & Arenas, 2012) and
quality (Jack-McCollough & Nieh, 2015; Seeley, Camazine, & Sneyd,
1991; Seeley, Mikheyev,& Pagano, 2000) of resources they discover
using the waggle dance (von Frisch, 1967). The higher quality a
discovered resource is, the longer and more vigorously a scout will
recruit other foragers to it and the more likely it is that recruits will
recruit others, generating positive feedback (Seeley et al., 2000).
The colony's collective decision of which resource patches to
exploit emerges from these quality-based differences in recruit-
ment, without the need for individual foragers to sample or
compare multiple patches (Camazine & Sneyd, 1991; de Vries &
Biesmeijer, 1998; Seeley et al., 1991).

Just like solitary animals, a colony's investment in exploration
and exploitation should depend on characteristics of the resource
landscape. Previous theoretical work predicts that small resource
patches, high patch density and low search costs should increase a
social group's optimal investment in exploring (Johnson, Hubbell,&
Feener, 1987). Other work suggests that the benefits of exploitation
through social recruitment are highest when resources are difficult
to find, patchily distributed and variable in quality (Donaldson-
Matasci & Dornhaus, 2012; Dornhaus, Klugl, Oechslein, Puppe, &
Chittka, 2006; Sherman & Visscher, 2002). Colonies that invest
more in exploitation (e.g. via recruiting) should therefore perform
better when resources are clumped in the landscape, i.e. are non-
randomly grouped, while colonies that invest more in exploration
(e.g. via scouting) should perform better when resource patches are
evenly dispersed throughout the landscape. Furthermore, when
resource patches differ in quality, colonies that invest more in
exploitation should be better at choosing the highest-quality patch,
while colonies that invest more in exploration should be better at
finding patches quickly. Here we examined the way in which in-
dividual learning interacts with the spatial distribution of resources
to influence a colony's foraging decisions at the collective level.

Variation among individuals in cognitive ability can influence
the division of labour between workers that specialize in scouting
for new resources and those that specialize in exploiting known
resources. Although it is not fully understood what causes certain
individuals to act as scouts (Beekman, Gilchrist, Duncan, &
Sumpter, 2007; Dreller, 1998; Katz & Naug, 2015; Liang et al.,
2012; Mattila & Seeley, 2007), there is evidence that variation in
scouting tendency is linked to differences in learning, neurotrans-
mitter levels and gene expression (Cook et al., 2018; Lemanski,
Cook, Smith, & Pinter-Wollman, 2019; Liang et al., 2012). One
learning behaviour that has been recently linked with scouting in
honey bees is latent inhibition, the tendency to ignore stimuli that
have been previously encountered without a reward (Chandra
et al., 2000; Lubow, 1973). In the laboratory, individuals with high
latent inhibition (LI) act like ‘fast’ learners, preferring novel to
familiar stimuli and persisting in their learned associations, while
individuals with low LI act like ‘slow’ learners, paying attention to
both novel and familiar stimuli and easily reversing learned asso-
ciations (Chandra et al., 2000; Cook et al., 2020; Tait& Naug, 2020).
In the field, scout bees have been found to exhibit higher LI than
recruit bees (Cook et al., 2018), suggesting that a ‘fast’ learning style
is associatedwith exploration rather than exploitation in honey bee
foragers. Ignoring previously unrewarding ‘familiar’ stimuli may
help scouts seek new food resources quickly, while lower latent
inhibition may allow recruits to continue exploiting depleting
patches until new ones are located (Cook et al., 2018; Mosqueiro
et al., 2017).

Individual differences in expression of latent inhibition are
heritable in honey bees (Chandra et al., 2000; Chandra, Hunt,
Cobey, & Smith, 2001; Cook et al., 2020), and there is natural
variation in latent inhibition within a colony because of the genetic
diversity that results from a queen mating with multiple drones.
Latent inhibition is exhibited by drones and queens as well as by
workers, making it possible to artificially select lineages of honey
bees that are higher or lower than average in latent inhibition
(Chandra et al., 2000; Cook et al., 2020). Workers from these arti-
ficially selected lines display similar latent inhibition to their par-
ents, regardless of their adult social environment (Cook et al.,
2020). The ability to genetically select bees for latent inhibition
allows us to experimentally manipulate the composition of col-
onies to explore how individual learning affects colony level
foraging behaviour in different environmental situations.

Here we examined how the latent inhibition (LI) of individual
workers affects the collective foraging behaviour of honey bee
colonies in differently structured landscapes. We predicted that
the behavioural composition of colonies would influence the
colony level allocation of workers to exploration (via scouting)
and exploitation (via recruitment). We further predicted that
when resource patches are variable in quality, the allocation of
workers to exploration or exploitation would affect a colony's
ability to find and exploit the highest-quality resource patch.
Because scout bees tend to exhibit high LI (Cook et al., 2018), we
predicted that colonies composed of high LI individuals would
contain more scouts and, as a result, would be better at finding all
available resource patches quickly. Because recruits tend to
exhibit low LI, and collective decisions in honey bees emerge from
differential recruitment (Seeley et al., 1991), we predicted that
colonies composed of low LI individuals would be better at
differentially exploiting the highest-quality resource patches.
Furthermore, theory suggests that colonies that invest more in
exploration should be better at finding evenly dispersed re-
sources, while colonies that rely more on recruitment should be
better at exploiting clumped resources (Dornhaus et al., 2006;
Johnson et al., 1987). We therefore predicted that colonies
composed of high LI individuals would collect more food when
resources are evenly distributed in the environment while col-
onies composed of low LI individuals would collect more food
when resources are clumped, i.e. concentrated in a few large
patches.

To answer these questions, we first developed an agent-based
model to explore the effects of environmental features on the
foraging behaviour of honey bee colonies composed of awide range
of ratios of exploring and exploiting individuals (Fig. 1a). We then
tested our model predictions empirically by placing honey bee
colonies that were genetically selected for either high or low LI in
environments that differed in the distribution of resources, which
differed in their quality (Fig. 1b).
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Figure 1. Spatial distribution of resource patches of different qualities in the (a) agent-based model and (b) empirical experiment. (a) Simulated resource landscapes in the agent-
based model, with the symbol in the centre indicating the hive. Squares are resource patches, with darker hues indicating higher quality. (b) Experimental set-up of colonies in the
empirical study. Each compartment (large rectangle) is a 30 � 108 m flight tent. Coloured symbols in the middle of each tent depict a bee hive. Hive colour indicates whether the
colony is from a high (yellow) or low (purple) LI genetic line. Circles indicate feeders, with darker hues indicating higher quality and the letter inside indicating sucrose con-
centration (H: high (2.5 M), M: medium (1.5 M) and L: low (0.75 M)). Clumped treatment is in red and dispersed treatment in blue. After 2 days in this configuration, the
experimental set-up was flipped such that the top two flight tents received dispersed feeders in the open corners of the tent and the bottom two tents received clumped feeders in
the open corner of the tent.
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METHODS

Agent-based Model

To examine how the distribution of food resources in the
landscape influences the explorationeexploitation trade-off, we
developed a spatially explicit agent-based simulation of colony
foraging behaviour as a modification of a previous model by
Mosqueiro et al. (2017). Full model details are presented in the
Overview, Design concepts, and Details (ODD) format (Grimm et al.,
2020) in the Supplementary Materials and may also be found on
Github. For a full list of model parameters, see Table 1. The model
was implemented using Python v.2.7.

To examine how colonies choose among different quality re-
sources, we simulated a resource landscape, represented as a
36 � 36 m, two-dimensional grid, with the hive at the centre. The
landscape had three 5.76 � 5.76 m nondepleting resource patches,
each located 14.4 m from the hive. Each resource patch had a
different quality q, defined as the amount of food bees collected in a
single foraging load (Fig. 1a). The low-quality patch offered 1
resource unit per load, the medium-quality patch offered 2 units,
and the high-quality patch offered 3 units. For bees, this is analo-
gous to nectars with different sugar concentrations because load
size is limited by the volume of a forager's crop, where it carries the
nectar load (Wolf & Schmid-Hempel, 1989).
To uncover the effect of resource distribution on colony foraging,
we simulated two different spatial distributions. In the ‘dispersed’
distribution, the three resource patches were evenly spaced in a
circle around the hive (Fig. 1a). The resources were each 14.4 m
from the hive and located 120� from each other, relative to the hive.
In the ‘clumped’ distribution, all three resource patches were
adjacent but not overlapping, with the centres of the patches 24�

from each other relative to the hive (Fig. 1a).
Simulated colonies contained two types of foragers: scouts,

which searched for food independently, and recruits, which waited
to be recruited to food sources by nestmates. Forager flight dy-
namics were modelled as a biased randomwalk: at each time step,
a forager's movement directionwas the sum of its drift vector and a
random angle drawn from a uniform distribution from -q/2 to q/2,
where q is the movement error parameter (Codling, Plank, &
Benhamou, 2008; Mosqueiro et al., 2017; Reynolds, Smith,
Reynolds, Carreck, & Osborne, 2007). At the beginning of the
simulation (t ¼ 0), all foragers started at the hive. At t ¼ 1, scouts
left the hive in a random direction and continued flying until they
found food or reached the end of the foraging arena, at which point
they returned directly to the hive.

Upon returning to the hive, successful scouts recruited inactive
foragers (‘recruits’) with probability qws, where q is the quality of
the located resource and the constant ws is the scout baseline
dancing probability (see Table 1 for parameter values). Scouts
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remained at the hive recruiting exploiters for 50 time steps, where
each time step represents approximately 1.2 s. Scouts then
returned to the located resource until their number of trips to that
locationwas equal to their persistence parameter, p. After visiting a
food patch p times, scouts left the hive in a new random direction
to continue exploring. Recruits remained inactive in the hive until
recruited to a resource by another forager. Once recruited, recruits
left the hive in the advertised direction and flew until they found
food, at which point they returned to the hive. On returning to the
hive, recruits also recruited inactive exploiters with probability qwr,
where parameter wr is the recruit baseline dancing probability
(Table 1). Recruits then returned to the located resource until their
number of trips to that location was equal to their persistence
parameter, p at which point they became inactive at the hive until
recruited again. We performed a sensitivity analysis to determine
whether changing the value of p affected our results, and we did
not find a qualitative effect of the value of p on our results (Ap-
pendix, Fig. A1). Each simulation ran for 21000 time steps, which is
equivalent to 7 h of simulated time, a typical foraging duration for
bees (von Frisch, 1967).

To examine how the proportion of scouts in the colony and
resource distribution jointly affected collective foraging, we varied
the ratio of scouts from 10% to 90% of the foragers in the colony, in
10% intervals. For each scout proportion, we simulated both
dispersed and clumped resource distributions. Colonies were al-
ways composed of 100 foragers. For each combination of scout ratio
and resource distribution, we performed 150 simulation runs. To
assess how the proportion of scouts and resource distribution
jointly influence collective foraging, for each run, we calculated the
number of visits foragers made to each feeder as well as total food
collected by the colony at the end of the simulation. We also
calculated net food collected, defined as total food collected minus
total energy expended by foragers. We defined each forager's en-
ergy expenditure, dE, for each time step t, as:

dEt ¼ a þ b ðdxtÞ3

where dx is the distance that a forager travelled at time step t and a
and b are constants based on the literature (Mosqueiro et al., 2017)
(Table 1).
Table 1
Model parameters used in agent-based simulation

Parameter Definition

c Patch size
p Patch density
d Patch distance from hive
q Patch quality (sugar concentrati
ws Scout baseline dancing probabil
wr Recruit baseline dancing probab
g Recruitment rate
tr Time spent recruiting
vs Scout average flight speed
vr Recruit average flight speed
qs Movement error while explorin
qr Movement error while exploitin
a Energy consumption intercept
b Energy consumption slope
T Total simulation time
n Number of simulation runs
f Number of foragers
s Number of scouts
p Number of times a forager retur

The simulations examined the effect of changing the number of scouts
bution of the three food patches. All other parameters were held consta
Finally, for each resource distribution, we calculated the optimal
proportion of scouts as that which resulted in the highest net food
collection.

Empirical Experiments

We performed all empirical work at Arizona State University's
Honey Bee Research Lab on the Polytechnic campus in Mesa, Ari-
zona, U.S.A.

Genetic Line Selection

To create genetic lines selected for high or low latent inhibition,
we reared queens by grafting 1-day-old larvae into queen cups and
placing them into a queenless colony with nurse bees (‘queen-
bank’). After emergence, we placed queens into cages and back into
the queenbank for 7e10 days to mature. To obtain drones for the
line selection procedure, we collected mature drones as they
returned to a colony from mating flights in the late afternoon and
isolated them in mesh cages inside the queenbank overnight. We
tested both queens and drones for latent inhibition using the pro-
cedure described below, individually marked them using water-
based acrylic paint pens (Montana Cans, https://www.montana-
cans.com/en/marker-inks/acrylic-marker-ink/acrylic-markers/)
and returned them to the queenbank to await insemination for no
longer than 2 days.

Latent Inhibition Procedure

We scored the latent inhibition of queens and drones using a
proboscis extension reflex (PER) conditioning protocol (Smith &
Burden, 2014). We secured individuals in a plastic harness, so
that they could only move their antennae and proboscis. To ensure
that these bees responded to sucrose, which is essential for the PER
protocol, we presented each bee with a drop of 1 M sucrose to the
antennae and discarded any individual that did not extend its
proboscis. We then fed each bee 7 ml of 1 M sucrose and allowed it
to acclimate to the apparatus for 30 min. We familiarized bees to
one of two odours (2-octanone or 1-hexanol), both readily learned
by honey bees (Smith&Menzel, 1989), by presenting each beewith
40 unreinforced 4 s bursts of odour at 5 min intertrial intervals. To
test the effect of familiarization on subsequent reinforced learning,
Value(s)

5.76 � 5.76 m
0.6
14.4 m

on) 1 M, 2 M, 3 M
ity 0.33
ility 0.1

5/min
1 min
1
1.5

g for new patches 5
g a known patch 2

1e-5
1e-6
7 h
150
100
10e90

ns to last visited patch 20

in the colony, the persistence of scouts and recruits, and the distri-
nt in all simulations.

https://www.montana-cans.com/en/marker-inks/acrylic-marker-ink/acrylic-markers/
https://www.montana-cans.com/en/marker-inks/acrylic-marker-ink/acrylic-markers/
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we allowed bees to rest for 30 min, then exposed them to either the
familiar odour or to a novel odour, four times each, in a pseudo-
random order. Both odours were equally reinforced as follows. We
presented each odour for 4 s, and if the bee extended its proboscis
in the first 3 s, we recorded it as a positive response. Upon
extending its proboscis or after 3 s, we rewarded the bee with a
0.4 ml droplet of 1.5 M sucrose directly to its proboscis (Chandra,
Wright, & Smith, 2010).

We calculated LI scores as (number of positive responses to the
novel odour þ 1)/(number of positive responses to the familiar
odour þ 1) and classified individuals with scores greater than 2 as
high LI and individuals with scores less than 2 as low LI (Cook
et al., 2020). We created high and low LI lineages by instrumen-
tally inseminating high or low LI queens with like drones. We
inseminated each queen with a single drone using standard
instrumental insemination procedures (Cobey, Tarpy, & Woyke,
2013), then placed her into a nucleus colony of 5000 workers for
approximately 1 month to build up a worker population. We then
placed these colonies into standard nine-frame Langstroth hives
and monitored them weekly to ensure no supersedure of the
inseminated queen occurred. Previous work showed that workers
from these high and low LI genetic lines exhibit similar LI to their
parents (Cook et al., 2020).

Experimental Colony Creation

To create colonies of a single behavioural type for the experi-
ment, we placed approximately 600 newly emerged workers from
the colonies described above, marked by queen origin, of each LI
type into experimental nucleus colonies. We created four experi-
mental colonies of high LI workers and four colonies of low LI
workers (eight colonies total), providing a sample size twice as
large as previous work on colony level behaviour in honey bees
(Nouvian et al., 2018). To supplement the worker population of
these experimental colonies, we added approximately 600 control
bees from nonselected colonies. To allow the high and low LI
workers to reach foraging age, wewaited 2 weeks before beginning
the experiment.

Data Collection

To determine the foraging behaviour of the selected colonies in
environments with different resource distributions, we allowed
colonies to forage in a controlled environment. We collected data
over a 2-week period, during 1e12 October 2018. We tested four
colonies each week: two high LI and two low LI. Overnight, we
placed each colony into the centre of a 30 � � 108 m mesh flight
tent. Previous studies showed that bees engage in normal foraging
behaviour in tents this size (Cook et al., 2020; Liang et al., 2012). We
allowed colonies to acclimate to the tents for 1 day with access to
water. Due to adverse weather on the first week of the experiment,
we allowed colonies tested on that week to acclimate to the tents
for 2 days. After acclimation, to induce foraging behaviour and to
allow new foragers to become accustomed to artificial feeders, we
provided colonies with artificial feeders containing 1 M sucrose
solution scented with geraniol 2 m from the hive for 1 day.

To assess colonies’ abilities to choose among different quality
food sources, we placed three feeders of different quality in each
tent on each day of the experiment. Each feeder contained 100 ml
of sucrose solution. The high-quality feeder contained 2.5 M su-
crose, the medium-quality feeder contained 1.5 M sucrose, and the
low-quality feeder contained 0.75 M sucrose (Fig. 1b). For resources
at this distance from the hive, foragers typically perform round
dances, which, like waggle dances, have been shown to contain
directional information (Waddington & Kirchner, 1992). In
addition, dance followers can be recruited to particular resources
using odour information (Farina et al., 2005, 2012; Grüter & Farina,
2009). To facilitate recruitment, we paired each quality feeder with
a unique colour/odour combination. The odours used were 2-
octanone, 1-hexanol and acetophenone. Previous experience sug-
gests no innate difference in attractiveness of the odours used
(Smith & Menzel, 1989). Still, to control for possible differences in
attractiveness, we gave each set of high and low LI colonies a
different quality coloureodour combination. Each colony experi-
enced the same quality coloureodour combination throughout the
course of the experiment.

To manipulate the distribution of resources, we tested two
feeder configurations, clumped and dispersed. For two high LI and
two low LI colonies, we placed the experimental feeders in a
clumped configuration, with all three feeders closely spaced in a
single corner of the flight tent (Fig. 1b). For the other two high and
two low LI colonies, we placed the feeders in a dispersed configu-
ration, with each feeder in a different corner of the flight tent
(Fig. 1b). To avoid biasing foragers towards a particular direction, all
feeders in the dispersed configuration were in different corners
from the feeders in the clumped configuration (Fig. 1b). After 2
days, we switched the feeder distributions so that colonies that first
received the clumped treatment received the distributed treatment
and vice versa, and we collected data for 2 more days. To evaluate
the colonies’ foraging behaviour, we recorded the number of for-
agers that visited each feeder every 10 min for 7 h starting
approximately at 0900 hours. We only counted foragers as visitors
if they landed on the part of the feeders where food was accessible.

To measure the amount of food consumed, we weighed each
feeder upon deployment and every 30 min throughout the exper-
iment. We calculated daily food consumption as the difference
between initial and final feeder weight each day. To determine
whether evaporation had a different effect on the different sucrose
concentrations, we placed three feeders containing 2.5, 1.5 and
0.75 M sucrose solution each in a separate mesh enclosure from
which bees were excluded. These control feeders experienced
similar temperature and light conditions as the experimental ones.
We quantified evaporation from each control feeder as the differ-
ence between the weight when a feeder was deployed and its
weight 7 h later.

Data Analysis

To determine how colony latent inhibition and resource distri-
bution jointly influenced the colonies' visits to different quality
feeders, we performed a generalized linear mixed model (GLMM)
with total number of visits per day as the response variable with a
Poisson log link function. We performed a second GLMMwith daily
food consumption as the response variable with a normal distri-
bution and a log link function. In both models, we included colony
latent inhibition, resource distribution and feeder quality as fixed
effects. We included colony identity (ID) and date as random effects
to account for variation among colonies and for weather conditions,
respectively. We fitted both models by maximum likelihood using
Laplace approximation and the BOBYQA optimizer. Visual inspec-
tion of the residuals revealed no deviation from normality. We
performed all analyses in R v.3.5.2 (R Core Team, 2018), using the
‘lme4’ package (Bates, M€achler, Bolker, & Walker, 2015). To deter-
mine the confidence in our estimates, we performed a type II Wald
chi-square test on the GLMM results, using the ‘Anova’ function in
the R package ‘car’ (Fox & Weisberg, 2019).

To examine whether the three concentrations differed in
evaporation rates, we performed a linear mixed model (LMM) with
weight lost from the control feeders as the response variable,
concentration as a fixed effect and date as a random effect.
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Ethical Note

This work was conducted in accordance with the ASAB/ABS
Guidelines for the use of animals in research. Honeybees are in-
vertebrates and so do not require special institutional permissions
for experimentation. However, we took extreme care not to harm
bees during preparation and experimentation. We handled and
marked bees carefully, ensuring we did not damage their wings, we
wore PPE and used smoke to avoid bee stings, because when bees
sting, they die. Bees were placed back into the general apiary after
the experiments ended. Colonies were kept indoors and in a quiet
location until bees were 2 weeks old. We used naïve foragers to
prevent flying bees from attempting to leave the flight cages, to
decrease the likelihood of bee death from collisions with the tent.
Bees were provided food and water ad libitum, and flight cages
were equipped with water sprinklers to prevent overheating and
ensure highest possible survival and welfare. All experiments took
place on Arizona State University property and no endangered or
protected species were involved in this study.
RESULTS

Agent-based Model

In our simulations, colonies with a low proportion of scouts
collected 29% more food on average than colonies with a high
proportion of scouts, but with 54% higher variance between model
runs (Fig. 2). The proportion of scouts in a colony also affected the
colony's ability to distinguish between resources of different
qualities. Colonies with a lower proportion of scouts were better at
choosing the highest-quality food source, visiting it 4.4 times more
than the lowest-quality food source, compared to colonies with a
high proportion of scouts, which visited the high-quality food
source only 1.9 timesmore than the low-quality food source (Fig. 3).
Thus, if high LI colonies contain more scouts, our model predicted
that in the empirical experiment, the low LI colonies should be
better than high LI colonies at differentially exploiting the highest-
quality feeder.

Contrary to previous work (Dornhaus et al., 2006; Johnson et al.,
1987), our model showed that the spatial distribution of resources
only weakly influenced the optimal investment in scouting. This
difference may be due to the fact that resources in our ‘dispersed’
condition were more heterogeneously distributed than in previous
models. As a result, the difference in patch heterogeneity between
the ‘clumped’ and ‘dispersed’ landscapes in our model may not
have been large enough to affect the scouts' ability to locate all
three resource patches. Regardless of the proportion of scouts,
simulated colonies were better at differentially exploiting the
highest-quality food source when resources were clumped than
when resources were dispersed (Fig. 3). Furthermore, the optimal
proportion of scouts was higher when resources were clumped
(~40%) than when they were dispersed (~30%) (Fig. 4). Our model
therefore predicted that both high and low LI colonies should
choose higher-quality feeders, and collect more food, when the
resources are clumped compared to when they are dispersed. A
sensitivity analysis showed that changing the value of forager
persistence, p, did not qualitatively change the model outcome
(Appendix, Fig. A1). Higher persistence resulted in higher total food
collection but did not affect the relationship between resource
distribution and optimal scout number or patch choice.
Empirical Experiments

Colonies composed of high or low LI individuals differed
significantly in their response to feeder quality (Fig. 5). Low LI
colonies strongly preferred to visit and consume more food from
higher-quality feeders over lower-quality feeders, regardless of
feeder distribution (GLMM: colony LI � quality; visits: c2 ¼ 292.01,
P < 0.001; consumption: c2 ¼ 166654.01, P < 0.001). In contrast,
high LI colonies showed a weak preference for visiting higher-
quality feeders when the feeders were clumped but not when the
feeders were dispersed and they did not differ in their food con-
sumption from different quality feeders in either resource distri-
bution (GLMM: colony LI � feeder distribution � quality; visits:
c2 ¼ 17.37, P < 0.001; consumption: c2 ¼ 4928.69, P < 0.001).
Colonies from low LI lines also showed higher overall foraging ac-
tivity than colonies from high LI lines, as evidenced by higher visit
and food consumption rates (GLMM: colony LI; visits: c2 ¼ 27.10,
P < 0.001; consumption: c2 ¼ 180542.3, P < 0.001).

Furthermore, high and low LI colonies differed significantly in
how resource distribution affected foraging behaviour (Fig. 5). As
predicted by our model, low LI colonies visited feeders more
frequently and consumed more food when feeders were clumped
compared to when they were dispersed. In contrast, high LI col-
onies visited feeders more frequently and consumed more food
when feeders were dispersed compared to when they were clum-
ped (GLMM: colony LI � feeder distribution; visits: c2 ¼ 4.17, P ¼
0.041; consumption: c2 ¼ 7511.26, P < 0.001). For full output of the
statistical model see Appendix, Tables A1 and A2.

The weight lost due to evaporation in control feeders was very
small (mean ± SD ¼ 10.12 ± 6.22 g) relative to the amount removed
by honey bees in the experimental feeders (27.89 ± 36.02 across all
three concentrations). Still, higher sugar concentration had a
significantly slower rate of evaporation in the control feeders
(concentration: c2 ¼ 4.62, P ¼ 0.03), as would be predicted by
Raoult's law (Staverman & van Santen, 1941). Because the rela-
tionship between evaporation and sugar concentration was
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opposite to the relationship between concentration and food con-
sumption observed in our experimental feeders, evaporation most
likely caused us to underestimate empirical differences in forager
consumption between the different concentrations.

DISCUSSION

Our results demonstrate that individual differences in learning
affect collective decision making of groups in a different way than
they affect decision making of solitary individuals. Our simulation
predicted that colonies containing fewer scouts and more recruits
would be better at choosing the best quality patches in a landscape
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Figure 4. Effect of resource distribution on resource collection by simulated colonies with
collected at the end of the simulation minus energy expended from foraging on clumped res
to feeder (right panel) is the number of visits to all three feeders. We simulated colonies with
each food distribution. Vertical lines are standard errors of 150 simulation runs.
in which resource patches differ in quality (Fig. 3). This simulation
result emerged from the fact that scouts in the model were indis-
criminate regarding which patches they exploited, while recruits in
the model preferentially exploited higher-quality patches. Given
that previous empirical work found that scouts tend to be high in LI
(Cook et al., 2018), we predicted that more foragers would act as
scouts in high LI colonies and that low LI colonies would be better
than high LI colonies at focusing their foraging effort on higher-
quality patches. Our empirical results confirmed this prediction
(Fig. 5). Colonies composed of low LI bees, which are less explor-
atory as individuals, were better at choosing the highest-quality
patches to exploit. Thus, our results demonstrate that in a social
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group, explorers help the group make decisions quickly while ex-
ploiters help the group make decisions accurately.

These results can be explained by the nature of collective deci-
sion making in honey bee colonies. Previous work has shown that
each individual bee usually inspects only one available option and
recruits other individuals to that option in proportion to the re-
source's quality (Dyer, 2002; Jack-McCollough & Nieh, 2015; Seeley
et al., 1991). The colony's choice of which resource to exploit
emerges from the differences in recruitment among patches, rather
than any individual directly comparing options (de Vries &
Biesmeijer, 1998, 2002; Seeley, 1995). High latent inhibition helps
scouts to quickly find resources and report on their location and
profitability to the group (Cook et al., 2020). Meanwhile, low latent
inhibition helps the pool of recruits to sample broadly among
advertised resources. Because dances for higher-quality resources
attract more recruits, this broad sampling drives the majority of
recruits to exploit the best patches. As long as a colony had suffi-
cient scouts to locate high-quality patches, a larger number of ex-
ploiters resulted in greater utilization of the most rewarding patch
by the colony as a whole.

These results highlight a key difference between the
explorationeexploitation trade-off in social animals and in solitary
animals. While we initially thought of high and low LI bees as ex-
plorers and exploiters, it may be more accurate to describe them as
‘finders’ and ‘refiners’: the high LI finders explore outside the nest
for available resources to advertise and the low LI refiners collec-
tively choose the best available option by differentially recruiting to
advertised resources based on their quality (Cook et al., 2020). A
colony needs enough searchers to locate available options, but the
refiners are the ones who choose among them, so the colony can
exploit the highest-quality patch. Indeed in the model, we see
similar dynamics to the empirical experiments because the
simulated scouts, like high LI foragers, are indiscriminate about
what they exploit, but the simulated recruits, like low LI foragers,
are discriminatory in what they exploit.

In addition to choosing the highest-quality food patch (Fig. 3),
our model predicted that colonies with fewer scouts would collect
more total food than colonies with more scouts (Fig. 2). In the
model, this difference occurred because, once a few scouts located
the high-quality patch, a large number of recruits could quickly
exploit it without having to waste time searching for it indepen-
dently. Similarly, in our empirical study, the low LI colonies
collected more total food because, once a few foragers found the
high-quality food source, they mounted a stronger recruitment
response compared to the high LI colonies (Fig. 5). Because
recruitment is the process by which the colony discriminates high-
quality patches from low-quality ones, having a strong recruitment
response increased both the total food collected and the differential
utilization of the best patch.

Our simulation model predicted that the optimal investment in
exploration should be higher when resources are clumped than
when they are dispersed (Fig. 4). However, in contrast to this pre-
diction, our empirical work showed that low LI colonies collected
more food when resources were spatially clumped, while high LI
colonies collected more food when resources were evenly
dispersed resources (Fig. 5). Our finding that colonies with low LI
bees performed better with clumped resources is consistent with
previous theoretical and empirical work suggesting that the benefit
of recruitment information in honey bees and other social insects is
greatest when resources are clumped in large patches rather than
evenly dispersed (Donaldson-Matasci & Dornhaus, 2012; Dornhaus
et al., 2006; Johnson et al., 1987; Sherman & Visscher, 2002).
Characterizing high and low LI individuals as finders and refiners,
instead of explorers and exploiters, may further explain why the
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colonies of low LI bees collected more food in the clumped resource
distribution while colonies of high LI bees collected more in the
dispersed distribution. Previous experiments have shown that
recruitment by the waggle dance is subject to error (Tanner &
Visscher, 2010). When resources are clumped, individuals that are
recruited to a known patch may accidentally discover nearby
patches as well. In contrast, a broad search pattern such as a L�evy
flight is most effective for finding randomly dispersed resources
(Reynolds et al., 2007; Viswanathan et al., 1999).

Conclusions

Because resources are often patchily distributed and differ in
quality, gathering information about the environment is a key
component to foraging success. Our results suggest a novel solution
to the exploration/exploitation trade-off in social groups through a
division of labour between finders, who explore broadly for avail-
able resources, and refiners, who collectively choose among
discovered resources to allow the group to focus its exploitation on
the most rewarding patches. Our work suggests that finders and
refiners differ in how they learn about resources, with finders
learning associations quickly by focusing their attention on novel
stimuli and refiners making decisions accurately by focusing their
attention broadly on all available options. However, the collective
response to the environment is not simply an additive property of
individual learning, but an emergent property of the interactions
among these different types of individuals.
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Table A1
Results of GLMM with number of forager visits to feeders as the response variable

Effect c2
1 P

Colony latent inhibition (LI) 27.10 <0.001
Feeder distribution 24.99 <0.001
Feeder quality 2186.90 <0.001
Colony LI � feeder distribution 4.17 0.041
Colony LI � feeder quality 292.03 <0.001
Resource distribution � feeder quality 208.72 <0.001
Colony LI � feeder distribution � feeder quality 17.38 <0.001

Colony latent inhibition, feeder distribution and feeder quality are included as fixed
effects. Colony ID and date are included as random effects.
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Figure A1. Sensitivity analysis of the effect of persistence on the optimal number of scouts in the simulation model. We ran the agent-based model with different values of
persistence: the number of times foragers return to exploit a food patch (see persistence values in the inset). Net food was the amount of food collected at the end of the simulation
minus energy expended from foraging. Colours represent different persistence values. Each line shows the mean for one value of persistence; error bars show standard error across
150 model runs.

Table A2
Results of GLMM with food consumed from feeders as the response variable

Effect c2
1 P

Colony latent inhibition (LI) 180542.30 <0.001
Feeder distribution 26095.58 <0.001
Feeder quality 3140.19 <0.001
Colony LI � feeder distribution 7511.26 <0.001
Colony LI � feeder quality 166654 <0.001
Resource distribution � feeder quality 5491.07 <0.001
Colony LI � feeder distribution � feeder quality 4928.69 <0.001

Colony latent inhibition, feeder distribution and feeder quality are included as fixed
effects. Colony ID and date are included as random effects.
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