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Social interactions are important for how societies function, conferring robustness and resilience 

to environmental changes. The structure of social interactions can shape the dynamics of 

information and goods transmission. In addition, the availability and type of resources that are 

transferred might impact the structure of interaction networks. For example, storable resources 

might reduce the required speed of distribution and altering interaction structure can facilitate 

such change. Here we use ants as a model system to examine how social interactions are 

impacted by group size, food availability, and food type. We compare global- and individual-

level network measures across experiments in which groups of different sizes received limited or 

unlimited food that is either favorable and cannot be stored (carbohydrates), or unfavorable but 

with a potential of being stored (protein). We found that in larger groups, individuals interacted 

with more social partners and connected more individuals, and interaction networks became 

more compartmentalized. Furthermore, the number of individuals ants interacted with and the 

distance they traveled both increased when food was limited compared to when it was unlimited. 

Our findings highlight how biological systems can adjust their interaction networks in ways that 

relate to their function. The study of such biological flexibility can inspire novel and important 

solutions to the design of robust and resilient supply chains. 

        

Keywords: Flexibility, food sharing, network dynamics, social network analysis, supply chains.  
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Introduction 

Social interactions facilitate the flow of information, resources, and disease throughout societies. 

The network structures that emerge from these interactions impact how rapidly and how evenly 

resources are distributed throughout a population. Both global- and individual-level network 

features influence these dynamics. For example, networks that are highly modular and 

subdivided facilitate different flows compared to networks that are uniformly connected (Sah et 

al., 2017; Salathé and Jones, 2010; Silk and Fefferman, 2021). Similarly, individual connectivity 

can impact the dynamics of flow on a network, for example highly connected individuals can 

have a disproportionate impact on disease spread (Lloyd-Smith et al., 2005). 

While much theoretical (Eames and Keeling, 2002) and empirical (Stroeymeyt et al., 

2014) work has been devoted to uncovering the ways in which network structure influences 

transmission dynamics, especially in the context of disease transmission (Fefferman and Ng, 

2007; Firth et al., 2020; Gates and Woolhouse, 2015; Godfrey, 2013; Jones et al., 2018; Pautasso 

and Jeger, 2008), less attention has been devoted to the way in which the nature of what is being 

transmitted might impact network structure. For example, foraging on resources with high 

spatiotemporal variability may promote food-sharing networks that are structured in a way that 

mitigates collective resource shortfalls (Jones and Ready, 2022). The way in which animals 

interact is especially important when groups have shared goals, such as social insects, in which 

sterile workers cooperate to produce reproductives that will found new related colonies. In such 

cooperative groups, the way in which resources, such as food, are shared, highly depends on how 

individuals interact with one another (Gordon, 2010). Thus, it is important to determine if the 

type of resources and their availability impact the structure of social interactions to shape 

resource sharing in cooperative groups. Here we investigate how the structure of interaction 

networks that facilitate food distribution respond to the type and availability of resources, in the 

absence of central control. 

Resource availability impacts how individuals interact. For example, when carbohydrates 

are limited, animals increase their foraging for sugars (Hendriksma et al., 2019; Kay, 2004) and 

similarly, they increase their intake of proteins and other macronutrients when those are limited 

(Kohl et al., 2015; Mayntz et al., 2005). Limitations on resources may alter how they are shared 

among group members and therefore such limitations can impact the way in which individuals 

interact (Hadjichrysanthou and Broom 2012). Abundant food resources may reduce the need for 
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food-sharing if each individual is able to supply itself adequately, potentially resulting in fewer 

interactions overall. Similarly, if food supply is limited, we might still expect few interactions if 

sharing a scarce resource means that each group member will not receive enough to survive.  

Furthermore, the type of resources that are distributed can influence the way in which 

individuals interact. Some resources can be stored and their dissemination does not rely on rapid 

sharing, while perishable resources that cannot be stored may need to be distributed rapidly. 

Animals utilize different types of nutrients to serve different physiological needs, which can 

change over time (Simpson and Raubenheimer, 2012). For example, when offspring are being 

produced, ants require and forage for more proteins than when they do not have offspring to feed 

(Cassill and Tschinkel, 1995). Thus, it is possible that the type of resource which is being shared 

in a group might determine how it is shared, altering network structure. For example, the 

presence of perishable goods may result in more interactions to facilitate rapid resource 

dissemination, compared to when storable resources are being distributed.  

Finally, group size is an important factor that shapes patterns of social interaction. Group 

and colony size have been shown to buffer adverse effects of environmental stressors (reviewed 

by Linksvayer and Janssen 2009 and Straub et al 2015) including food limitations (Kaspari and 

Vargo 1995). The more individuals in a group, the greater the potential to interact (Quque et al., 

2021). However, increased interactions can be costly—e.g., individuals may be at greater risk of 

exposure to pathogens and injury due to aggression. One way to mitigate such costs may be to 

subdivide large groups into clusters in which interactions occur more intensely compared to 

across clusters (Silk and Fefferman, 2021). Thus, as a group becomes larger, global changes to 

group structure, or to the way in which a group is organized, may alter how individuals interact 

(Miller et al., 2022). Groups of different sizes may have different interaction patterns that 

maintain certain network features (O’Donnell and Bulova, 2007; Pacala et al., 1996). For 

example, if the number of interactions increases with group size, network density (the number of 

observed connections over the number of possible connections) may remain constant across 

group sizes if network density is important for the robustness of resource flow. Alternatively, if 

the number of interactions does not scale with group size, network density may decrease with 

group size, potentially slowing down the transfer of goods in larger groups. Here we ask how 

group size impacts the structure of a network that is used to transfer resources. 
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Ants are an ideal model system for examining the dynamics of social interactions because 

of the important function that interactions have for the fitness of the colony. The way in which 

ants interact with one another allows them to regulate their collective foraging (Gordon, 2010; 

Greene and Gordon, 2006; Greene et al., 2013; Pinter-Wollman et al., 2013) for example in 

response to colony nutritional needs (Csata et al., 2020; Dussutour and Simpson, 2008; 

Dussutour and Simpson, 2009). Certain individuals (i.e., foragers) leave the nest to collect food 

and bring it back to the nest (Gordon, 1989; Gordon, 1996). Once at the nest, food is distributed 

and stored, and foragers decide whether or not to continue foraging based on certain types of 

interactions with nestmates (Miller and Pinter-Wollman, 2023), the forager’s own food load 

(Greenwald et al., 2018; Howard and Tschinkel, 1980; Wallis, 1964), how deep a forager moves 

into the nest (Baltiansky et al., 2023), and the presence of larvae in the nest (Ulrich et al., 2016). 

The sharing of liquid food, which many ant species forage for and consume, is carried out 

through trophallaxis, which is a mouth-to-mouth interaction in which liquid food is transmitted 

from one individual to another. Resource availability impacts the speed of food dissemination 

through the colony: the longer a colony is starved, the quicker newly discovered food is 

distributed throughout the colony (Howard and Tschinkel, 1981). This change in food 

distribution speed might be a result of changes to the interaction network that facilitates food 

sharing (Sendova-Franks et al., 2010). Furthermore, ant colonies require different types of 

nutrients, with workers primarily consuming sugars, and proteins being consumed by queens and 

larvae (Markin, 1970). Proteins have a negative impact on worker longevity (Dussutour and 

Simpson, 2012) and ant foraging decisions are impacted by the type of food they require (Barbee 

and Pinter-Wollman, 2022; Portha et al., 2002). Because sugars are consumed by workers, they 

can be viewed as a perishable resource that is not stored, while proteins can be stored in the 

brood. Sugars are distributed faster among workers than proteins (Howard and Tschinkel, 1981), 

potentially because ants have more interactions when fed with sugars than when fed with protein. 

Finally, most food transmission inside the nest occurs among workers, rather than to the queen or 

larvae, (Wilson and Eisner, 1957) and the number of trophallaxis interactions can increase with 

group size (Quque et al., 2021). Therefore, group size can impact the way in which food is 

distributed by altering interaction patterns. Given the ways in which ants respond to food 

availability, the array of nutritional needs within the colony, and the importance of group size for 
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interactions, ants are an excellent system for examining how the nature and utility of different 

resources may shape the ways in which resources are distributed. 

By studying the interactions among carpenter ants (Camponotus fragilis) under different 

conditions we ask if social interactions are impacted by group size, food availability, and food 

type. We quantify interactions using both global- and individual-level network measures and 

predict that larger groups will have more interactions to facilitate the transfer of resources. 

Furthermore, when food supply is unlimited, we expect fewer interactions than when supply is 

limited if distribution is less important for accessing resources. However, when food supply is 

limited, we might also expect a decrease in the number of interactions if it is suboptimal to share 

the scarce resource throughout the entire group (i.e., if each group member will not receive 

sufficient resources). However, clustering may increase when supply is low relative to when it is 

unlimited to ensure that at least some group members receive resources. Finally, we expect that 

when preferable food sources are provided (carbohydrates that are consumed by the workers that 

collect the food), there will be more interactions and less subdivision of the network (i.e., fewer 

clusters), compared to when a less preferred resource is provided (protein, which is only 

consumed by brood), to expedite the flow of the preferred resource.  

 

 

Methods 

Ant maintenance, tagging, and preparation for experiments 

We obtained worker ants of the species Camponotus fragilis from a colony maintained by an ant 

supplier (John Truong) on September 7, 2021. After transfer to the lab at UCLA, ants were 

housed in a rectangular plexiglass container (10.16 cm x 5.08 cm x 2.54 cm) and fed twice a 

week with liquid protein-rich food and carbohydrate-rich food (see recipes in the Supplemental 

materials). We tagged ants with BEEtags (Crall et al., 2015) that were printed on paper and 

laminated using transparent Scotch® tape. We used Loctite epoxy adhesive to affix the tags to 

the ants’ thorax (Figure 1B). Before each experimental trial, tagged ants were selected 

haphazardly and placed together as a group in a petri dish (90×15mm) for 5-6 days without food. 

Group sizes ranged from 14-30 individuals. Note that while we could not find information in the 

literature on the colony size of this species, other Camponotus species have relatively small 

colony sizes, e.g., colonies of C. socius have 150-250 workers (Tschinkel 2005), C. japonicus 
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have approximately 150 workers (Goco et al., 2023), and one-year old C. herculaneus colonies 

contain less than 15 workers (personal observations from lab raised colonies). Therefore, the 

group sizes we examined here compare to young Camponotus colonies. All experiments were 

conducted between October 26, 2021 and June 24, 2022. 

 

Experimental treatments 

Each group of ants was assigned haphazardly to one of four treatments in which we provided 

them with either an unlimited or a limited supply of food that was either rich in carbohydrates or 

in protein. During the experiments, we supplied ants with food outside the petri dish in which 

they were housed and tracked (see tracking details in the following section). Liquid food (0.3 ml) 

was placed in a cap of a microcentrifuge tube which was connected to the petri dish with a 

plastic tube (inner-diameter = 5mm; length = 2 cm;) that allowed access to the food by only one 

ant at a time (Figure 1A).  

Unlimited food supply:  When food supply was unlimited, we provided the food, as detailed 

above, for the duration of the experiment. We provided enough food so that it did not run out and 

did not require replenishing during the experiment. While all ants had access to food in these 

trials, only some ants left the nest to gather food. 

 

Limited food supply: When food supply was limited, we provided the ants with food as detailed 

above until 10% of the unique ants in the group visited the food source, fed, and returned to the 

tracked petri dish. Once 10% of the ants fed (this took less than 5 min), we closed the tube 

connecting the tracked petri dish to the food using a cotton ball. The time it took 10% of the ants 

to visit the food was so short that no ant visited the food more than once. 

 

Carbohydrate-rich food: We made carbohydrate-rich food by mixing 0.22g sugar and 2 ml 

deionized water. 

 

Protein-rich food: We made protein-rich food by mixing 0.564g pasteurized egg powder 

(Modernist Pantry), 0.188g sugar and 3.75ml deionized water. 
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Both recipes are modified from (Baltiansky et al., 2021). Because workers died during the course 

of the study, especially when fed with protein, as seen in other studies of ant diet (Dussutour and 

Simpson, 2012), our experimental design was not completely balanced. For sample sizes in each 

treatment, see Table 1.  

 

Filming, image analysis, and inferring interactions 

Groups were filmed for 60 min using a camera (FLIR Blackfly, Resolution 5,472 x 3,648 PPI) and 

mounted LED lights for illumination (Thorlabs, MCWHL6) and images were captured using the 

Micromanager software (Edelstein et al., 2014). In some trials, the time it took to store images 

while filming reduced the frame rate at certain points in the trial (Figure S1). Furthermore, the 

average frame rate across trials was not identical, it ranged from 0.31 to 2.92 images/sec, with an 

average of 1.61 images/sec and a median of 1.72 images/sec. To account for these differences 

across trials we included ‘frame rate’ in our statistical models and we did not examine measures 

that rely on the duration of interactions, only on whether or not an interaction occurred. The 

position of each ant was extracted from the individually attached BEEtags using a slightly 

modified BEEtag tracking code in Matlab (Crall et al., 2015) (Figure 1C), code available on 

Github (https://github.com/MJHasenjager/Identifying-Trophallaxis-Networks). We used the 

directionality of the BEEtags to determine the position of each ant’s head and considered only 

head-to-head interactions in our analysis. Considering only head-to-head interactions allowed us 

to restrict our analysis to interactions that might result in trophallaxis (i.e., exchange of liquid 

food) and exclude other interactions, such as head-to-abdomen, abdomen-to-abdomen, etc. To 

identify interactions, we used  a distance of 102 pixels (1pixel = 0.04mm) as the threshold 

distance to automatically infer interactions. If the heads of two ants were equal to or less than 

this threshold distance in any frame, they were considered interacting. We established this 

threshold based on manual measurements of distances between ants in 50 randomly selected 

frames from each trial. We averaged the manually measured distances in each trial and used the 

highest average value for all trials, code available on Github (https://github.com/MJHasenjager/ 

Identifying-Trophallaxis-Networks). Due to variation in frame rates across and within trials, we 

did not determine the strength (duration) of each interaction, but simply noted if individuals 

interacted or not to form an unweighted and undirected interaction network. Note that not all ants 
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interacted and therefore interaction networks might include fewer individuals than the number of 

individuals in a group (Figure S1). 

 

Social network analysis 

We used network analysis to quantify the social behavior of the ants and to determine how their 

social behavior changed in response to the experimental manipulations. Each ant was a node in 

the network, and an interaction (edge) connected two ants when their heads were within a 

specified distance threshold (102 pixels) that allowed for trophallaxis, as detailed above (Figure 

1D). To quantify the social behavior of the ants we used two network measures that quantify 

global network structure (network density and number of clusters) and two individual-based 

centrality measures (degree and betweenness). Network measures were calculated using the R 

package ‘igraph’ (Csardi and Nepusz, 2006). 

 

Network density: Number of all observed interactions between ants divided by all possible 

interactions. This measure provides information about the overall connectivity of the network 

while scaling for network (group) size. 

 

Number of clusters: Number of clusters that each network can be delineated into. We applied the 

‘walktrap’ clustering algorithm (using the cluster_walktrap() function in the R package ‘igraph’ 

(Csardi and Nepusz, 2006)) to all networks and recorded the number of clusters that were 

identified by this algorithm. We selected the ‘walktrap’ algorithm, among many available 

network clustering algorithms, because on visual inspection of the clusters that it identified, it 

provided the most biologically plausible clusters, in which different clusters were assigned to 

groups that were least connected.   

 

Degree: Number of unique individuals that an ant interacted with. Provides information on how 

many interaction partners each individual had. This measure is not scaled for group size and so 

there are often more opportunities to have greater degree values in larger groups. 

 

Betweenness: Number of shortest paths that connect pairs of individuals and that pass through 

the focal ant. This measure provides information on how well each ant acts as a bridge for other 
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ants' interactions. Individuals with high betweenness connect many ants which might not be 

well-connected themselves.  

 

Activity level 

To examine if ant activity changed in response to the experimental manipulations, we measured 

the ‘total distance moved’ by each ant. We first measured the distance (in pixels) that an ant 

moved between two consecutive images and then summed all these distances throughout a trial 

to obtain the ‘total distance moved’ for each ant. This measure was used in other studies to 

quantify ant activity and it relates to how exploratory an individual is (Page et al., 2018). 

 

Statistical analysis 

To determine the impact of group size, food availability, and food type of social interactions, we 

ran linear mixed models (LMM) or generalized linear mixed models (GLMM). In each model 

one of the network measures (density, number of clusters, degree, or betweenness) or total 

distance moved was the dependent variable. The explanatory variables included group size (a 

continuous numeric value), food availability (limited or unlimited), and food type (carbohydrates 

or protein). For group-level network measures, each data point was for an entire group and we 

included ‘group ID’ as a random effect because while most groups were used only once, some 

groups were used multiple times (median 3 times, see data provided with the analysis code for 

details on repeated measures). Furthermore, because frame rate slightly differed across trials 

(Figure S2) we include the average frame rate of each trial as an effect in the model. For 

individual-based network measures and for total distance moved each data point was for an 

individual ant, and we included ‘group ID’, ‘individual ID’, and ‘frame rate’ as random effects in 

the models to account for variation among groups and among individuals that were tested 

multiple times in different treatments and to account for variation in frame rate across trials. 

We used a model selection approach to determine whether or not to include interactions 

among effects in our final statistical model. We ran each model with either no interactions 

among group size, food type, and food availability; with the three-way interaction term among 

the three variables; and three additional models with just one interaction each between a different 

pair of variables each time, totaling 5 statistical models. We then compared the models using 

AIC and selected the best fit model, i.e., the one with the lowest AIC score. The best fit models 
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for the two global-level measures, density and number of clusters, as well as for the individual-

level network measure ‘betweenness’, and for ‘total distance moved’, included no interaction 

terms among the explanatory effects. The best fit models for the individual-level network 

measure ‘degree’ included only one interaction term between food type and food availability (see 

supplementary materials Tables S2-6 for AIC values of all the models we tested). All the best 

fitting models met the required statistical assumptions – examined using the check_model() 

function in the ‘performance’ package (Lüdecke et al., 2021). 

For density, number of clusters, degree, and total distance moved we ran an LMM, 

implemented using the lmer() function in the ‘lme4’ package. For betweenness, we used a 

GLMM with a gamma log link function, implemented using the glmer() function in the ‘lme4’ 

package (Bates et al., 2015). We report the analysis of deviance of the models, obtained using the 

Anova() function in the ‘car’ R package (Fox and Weisberg, 2019). We report the percent 

variance explained by the random effects as the conditional R
2
 minus the marginal R

2
. For the 

only model that included and interaction term (degree), we conducted post hoc Tukey tests using 

the emmeans() function in the ‘emmeans’ R package (Lenth, 2022). 

Image analysis was conducted in Matlab (Mathworks Inc., Natick, MA, U.S.A.) and 

network and statistical analyses were conducted in R (R Core, 2014).  

 

Data accessibility 

All data and code can be found on Github (https://github.com/MJHasenjager/Identifying-

Trophallaxis-Networks). 

 

Ethical Note 

This work was conducted in accordance with the local animal welfare laws, guidelines and 

policy for the use of animals in research. Ants are invertebrates and do not require special 

institutional permissions for experimentation. We handled ants with extreme care. We used soft 

tweezers when handling the ants to minimize harm. Experiments involved video recording of 

ants’ behavior, with no invasive methods. After the experiments we kept the ants in the lab and 

provided them with food ad lib until they died naturally 
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Results 

Group size, food type, and food availability differed in their impact on the four measures of 

social behavior. Of the group-level measures, only the number of clusters was impacted by our 

experimental treatments, but both individual-level centrality measures (degree and betweenness) 

were impacted by the different experimental manipulations. 

Network density was not impacted by group size, food type, food availability, or frame 

rate. None of the effects in the model were statistically significant (Table 2). The random effect 

‘group ID’ explained 13.6% of the variance in the model. 

 The number of clusters in a network was significantly impacted by group size (Table 3). 

Larger groups had significantly more clusters (Figure 2, Table 3). The random effect ‘group ID’ 

explained 28.8% of the variance in the model. 

 The number of unique individuals that each ant interacted with (i.e., degree) was 

significantly impacted by group size, food availability, and the interaction between food type and 

food availability (Figure 3, Table 4). Ants in groups that were fed with carbohydrate-rich food 

interacted with more unique individuals when food supply was limited than when it was 

unlimited (post hoc Tukey test comparing food availability by food type, for unlimited vs. 

limited food supply when fed with carbohydrates: estimate = -2.072, SE = 0.572, df = 409.8, t = -

3.623, p-value = 0.0019). The random effects ‘group ID’ and ‘individual ID’, and ‘frame rate’ 

explained 56.9% of the variance in the model. 

The number of shortest paths between pairs of ants that pass through a focal ant (i.e., 

betweenness) was significantly impacted by group size (Figure 4, Table 5). Individuals in larger 

groups had significantly higher betweenness (Figure 4, Table 5).  

 Ant activity was only partially affected by group size, food type, and food availability. 

Group size and food type did not impact the distance that ants moved, but food availability did 

(Table 6). When food was limited, ants walked greater distances than when food was unlimited 

(Figure 5).    

 

 

Discussion 

We found that ant social interactions were impacted by group size and food availability but not 

by food type. As one might expect, the number of unique individuals contacted by each ant and 
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the number of social clusters in a colony both increased with group size. Interestingly limiting 

food supply resulted in more interactions with unique individuals and longer distances traveled 

by ants. These observed differences in network structure have the potential to impact the rate of 

food transfer among ants because the head-to-head interactions that we observed reflect the 

potential to engage in food-sharing behaviors. 

Individuals in larger groups interacted with more unique individuals (high degree, Figure 

3) and had more shortest paths pass through them (high betweenness, Figure 4). We further 

detected more clusters in larger groups (Figure 2). However, network density, i.e. the observed 

number of links relative to the possible number of links, did not increase with group size. 

Because network density is scaled to group size, we can infer that the positive relationship 

between other network measures and group size emerges simply from having more ants in the 

group and not from qualitative differences in the way that ants interact when they are in larger 

groups. The petri dishes used to house ants in all experiments were the same size, so ants in 

larger groups were more crowded. Despite this greater crowding of ants in larger groups, 

network density did not correspond to group size, suggesting that ants maintained a relatively 

constant interaction rate across group densities (i.e., number of ants per unit area) in the range 

that we tested. A study of the trophallaxis interactions of the black garden ant similarly found 

that the distribution of food throughout the colony is independent of group size (Quque et al., 

2021). One way to decouple group size and network density is by reducing the number of ants 

that participate in interactions. However, we found that most (but not all) ants in a group 

participated in the interaction networks that we observed (Figure S1). Only when ants were fed 

with an unlimited supply of protein-rich food did the proportion of ants that participated in the 

interaction network slightly declined relative to other treatments (Figure S2). In addition, 

maintaining interaction network density across group sizes can be achieved by increasing the 

number of interactions that each individual experiences with group size. Indeed, we found that as 

group size increases, ants interact with more unique individuals (Figure 3), similar to the positive 

relationship between number of interactions and group size in black garden ants (Quque et al., 

2021). Thus, by adjusting the local behavior of each ant (degree), the global structure of the 

network (network density) is maintained across group sizes and across population densities. 

More clustering in larger groups means that there is greater subdivision within an 

interaction network, increasing the potential for certain individuals to act as ‘brokers’ among 
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clusters, i.e., having higher betweenness. We found that both the number of clusters (Figure 2) 

and betweenness (Figure 4) positively correlated with group size. Work on Formica fusca ants 

showed that certain individuals in the colony can accumulate food, essentially acting as food 

storage units that can enhance food distribution across the network (Buffin et al., 2009). While 

having many clusters may slow down food transfer throughout the entire group, it can also 

expedite food sharing within clusters, because there are fewer individuals within each cluster 

(Sah et al., 2017). These dynamics may result in homogeneous food distribution within, but not 

across, clusters. Such a distribution of interactions might be advantageous to the entire group 

when supplies are limited as a bet hedging strategy, helping to ensure that at least part of the 

group (e.g., all individuals in one or more clusters) may have access to a sufficient amount of 

resources. Without such social sub-division, a limited resource might be distributed evenly 

across the entire group, risking a situation in which everyone receives too little food to survive. 

Indeed, within human populations that rely on subsistence harvesting, it has been argued that a 

modular organization of the population into local resource-sharing clusters can help to mitigate 

the impacts of systemic resource shortfalls by limiting local collapses (Jones and Ready, 2022). 

While trophallaxis interactions facilitate a homogenous distribution of cuticular hydrocarbons 

which are critical for nestmate recognition (Dahbi et al., 1999), a homogeneous distribution of 

food to all nestmates might not always be necessary, or advantageous. Our finding that 

betweenness and number of clusters increased with group size further suggests that subdividing 

an interaction network may be important for preventing the dilution of a resource across all 

group members, especially when the group is large.   Food availability only impacted the number 

of unique individuals an ant interacted with (degree) when fed with carbohydrate-rich food and 

the distance an ant traveled. When food was limited, ants traveled larger distances (Figure 5) and 

when they were fed with carbohydrate-rich food, they interacted with more unique individuals 

(post hoc tests of Figure 2). It is possible that ants walked more when food was limited in search 

of food sources. In their search for food, the ants interacted with more unique individuals, 

potentially engaging in more food sharing interactions. Indeed, walking patterns have been 

shown to affect social interactions in ants both using models (Pinter-Wollman 2015b) and 

empirical work (Pinter-Wollman et al., 2011). 

.  
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Food type did not impact any of the measures we examined. The only effect of food type 

we found was that fewer individuals in the group interacted (were part of the interaction 

network) when ants were fed with an unlimited supply of protein-rich diet, but there was no 

effect of food viability on the number of ants participating in the interaction network when fed 

with carbohydrate-rich diet (Figure S2).   Ant workers consume and use carbohydrates for 

energy, whereas protein is transferred to the brood and queens (Markin, 1970). In our study, 

brood was not present in the experimental groups and the protein-rich food still contained 

approximately half the concentration of sugar as the carbohydrate-rich food (see supplementary 

materials), to ensure that ants eat it. While brood are the main consumers of protein (Howard and 

Tschinkel, 1981), when providing ants with protein in liquid form mixed with sugars, similar to 

the protein-rich food used in our study, such food can remain in workers for 24 hours (Sorensen 

and Vinson, 1981). However, the lack of brood in our experimental groups might have resulted 

in our inability to detect an effect of food type on interaction patterns. Previous work similarly 

found that the presence of brood does not impact the way in which ants interact (Quque et al., 

2021). Thus it is possible that the effect of brood on which food ants consumed is regulated on a 

longer time scale than the one we studied here. Future work might examine the long-term effects 

of food type and brood presence on food dissemination throughout an ant colony because 

carbohydrates cannot be stored and are akin to perishable goods, whereas protein can be stored in 

larvae and is thus a potential proxy for non-perishable goods. Such differences between 

perishable and storable goods may reveal differences in interaction structures to facilitate rapid 

distribution of perishable goods, but other forms of network organization that facilitate acquiring 

and storing storable goods. 

Further work is needed to uncover the mechanisms that underlie the impacts we found of 

group size and food availability on interaction patterns. For example, changes to the level of 

activity of workers and their walking patterns when fed different types of food might explain 

changes in interaction rates (Pinter-Wollman, 2015b). Indeed, we found that the distance ants 

moved throughout the experiment increased when food was limited, potentially explaining the 

higher number of unique individuals that ants interacted with (degree) when fed with limited 

compared to unlimited amounts of carbohydrate-rich food. Perhaps when food was limited, ants 

were moving around more in search for food, or for full ants to receive food from. Furthermore, 

the spatial distribution of ants within a nest might determine who interacts with whom and how 
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frequently (Pinter-Wollman, 2015a; Pinter-Wollman et al., 2013; Pinter-Wollman et al., 2011) 

and can influence foraging decision and the flow of food among nestmates (Baltiansky et al., 

2023; Buffin et al., 2009). In our experiment, all trials were conducted in circular petri dishes 

with no internal structure. Future work could test the effect of spatial structure on response to 

food availability and type by testing ants that are housed in different structures. It might be 

further interesting to determine who initiates interactions, fed or hungry ants because recent work 

suggests that fed and hungry ants play different roles in food distribution within ant colonies 

(Miller and Pinter-Wollman, 2023). In addition, our work did not distinguish between different 

types of interactions, for example, when ants interact head-to-head, they might be antennating, 

connecting mandibles without food exchange, or actively exchanging food. Furthermore, ants 

may have other types of encounters, such as head to body – which may lead to exchange of 

information through cuticular hydrocarbons, but not to food exchange. While we did not 

distinguish between different types of interaction, recent work shows that trophallaxis 

interactions are more important than other interaction types in determining ant foraging decisions 

(Miller and Pinter-Wollman, 2023). It is possible that some of the patterns we observed here are 

buffered in large colonies that contain brood. For example, if only a small proportion of the 

colony participates in interactions to distribute food, the number of individuals engaged in food 

distribution might be constant and social interactions that facilitate food distribution would not 

be impacted by the effects of group size that we found here. Indeed, ant group and colony size 

have been shown to buffer adverse effects of environmental stressors (reviewed by Linksvayer 

and Janssen 2009 and Straub et al 2015) including food limitations (Kaspari and Vargo 1995). 

Interestingly, for the three measures in which group size was statistically significant (number of 

clusters, degree, and betweenness), the best fitting model we identified, was also a better fit to 

the data than a model in which groups size was included as a second degree polynomial (Tables 

S7-9). Thus, ants in larger groups do not change their interactions qualitatively, only 

quantitatively. The presence of brood that can store (and consume) proteins as well as the 

negative effects that a protein-rich diet might have on the survival of workers (Dussutour and 

Simpson, 2012), might further impact the way in which workers interact when provided different 

types of food. Finally, ant species differ in their propensity to transfer liquid food among workers 

(Wilson and Eisner, 1957) and a comparative study of food transmission dynamics across ant 

species might reveal a variety of transmission strategies that are adapted to different 
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environments.To conclude, our work provides insights into how social interactions that can 

facilitate the exchange of goods relate to group size and to the availability and type of goods. We 

find more interactions  that are more compartmentalized as groups sizes increase and as supplies 

become limited. This adjustment of biological social networks to potentially improve their 

function may inspire the study and design of robust and resilient supply chains. 
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Figures and Tables 

 

 

 

Fig. 1. Experimental setup. A. Illustration of the petri dish in which ants were tracked during 

the experiments, with the tube that led to the food source at the bottom left (ants not to scale). B. 

Image of ant workers (C. fragilis) with individually attached BEEtags. C. An image from one of 

the experiments overlaid with ants’ trajectories and their individual IDs - as identified from their 

BEEtags. D. A social network inferred from imaging data; nodes are individual ants that are 

connected with edges if their heads came close enough to one another to allow for trophallaxis.   
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Fig. 2. Number of clusters in the interaction network relates to group size. N= 46 groups, see 

statistics in Table 3.  Points are slightly jittered along the y-axis to improve visibility and the line 

shows the model fit.   
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Fig. 3. Number of unique individuals that an ant interacted with (degree) in relation to group 

size, food type, and food availability. Each point represents an individual ant (N = 859 data 

points from 232 unique individuals and 46 trials, see Table 1 for trial distribution across 

treatments).. Points in purple are from experiments in which the food type was carbohydrate-rich 
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and orange points are from experiments in which the food type was protein-rich. Darker and 

lighter colors respectively denote experiments in which food supply was unlimited and limited. 

Lines show the model fit with shaded areas as 95% confidence intervals. Points are slightly 

jittered along the x and y axes to improve visibility. 
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Fig. 4. Betweenness is positively related with group size. Each point represents an individual ant 

(N = 859 data points from 232 unique individuals and 46 trials).  Line is the fit of the statistical 

model. 
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Fig. 5. The total distance that ants moved (displayed in 1000 pixels) throughout the experiment 

was impacted by food availability. Ants moved larger distances when food was limited (grey) 

than when it was unlimited (black). N = 859 data points from 232 unique individuals and 46 

trials see Table 1 for trial distribution across treatments. Horizontal line is the median, boxes 

extend to 25 and 75 percentiles, whiskers extend to 1.5 times the interquartile range, and points 

are outliers. 
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Table 1. Sample sizes (number of groups tested) in each treatment combination. 

 

Food type: Carbohydrates Protein 

Food availability:   

Unlimited 13 8 

Limited 13 12 

 

 

 

 

 

 

Table 2. Network density: Analysis of deviance (Type II Wald 𝛸2
 tests) for the LMM 

examining the effect of group size, food type, and food availability on network density. 

Effect 𝛸2
 DF p-value 

Food type  0.579 1 0.447 

Food availability 0.331  1 0.565 

Group size 0.477 1 0.489 

Frame rate 1.707 1 0.191 
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Table 3. Number of clusters: Analysis of deviance (type II Wald 𝛸2
 tests) for the LMM 

examining the effect of group size, food type, and food availability on number of clusters in a 

group. Bold p-values indicate statistically significant results. 

Effect 𝛸2
 DF p-value 

Food type  0.043 1 0.836 

Food availability 1.213 1 0.271 

Group size 14.968 1 0.0001 

Frame rate 0.9717 1 0.324 

 

 

 

Table 4. Degree: Analysis of deviance (type II Wald 𝛸2
 tests) for the LMM examining the effect 

of group size, food type, food availability, and the interaction between food type and food 

availability on the number of unique individuals each ant interacted with (degree). Bold p-values 

indicate statistically significant results. 

Effect 𝛸2
 DF p-value 

Food type  1.187  1 0.276 

Food availability 11.069 1 0.0009 

Group size 14.342   1 0.0002 

Food type x Food availability 3.918  1 0.048 

    

    

    

 

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t



 

Table 5. Betweenness: Analysis of deviance (type II Wald 𝛸2
 tests) for the statistical model 

examining the effect of group size, food type, and food availability on the number of shortest 

paths that pass through a focal ant (betweenness). Bold p-values indicate statistically significant 

results. 

Effect 𝛸2
 DF p-value 

Food type  0.691 1 0.406 

Food availability 0.403 1 0.526 

Group size 29.311 1 < 0.0001 

    

    

    

    

 

 

Table 6. Total distance moved: Analysis of deviance (type II Wald 𝛸2
 tests) for the statistical 

model examining the effect of group size, food type, and food availability on the total distance 

that each ant moved throughout the trial. Bold p-values indicate statistically significant results. 

Effect 𝛸2
 DF p-value 

Food type  0.006 1 0.939 

Food availability 6.425 1 0.011 

Group size 0.069 1 0.793 

 

 

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t



Supplementary Materials and Methods 

1. Recipe for protein-rich liquid food (0.146M sugar)

3ml Hummingbird nectar concentrate (Perky-Pet) 

15 ml DI water  

0.1 gram Pasteurized whole Egg powder (Modernist Pantry) 

2. Recipe for Carbohydrate-rich liquid food (0.321M sugar)

2ml Hummingbird nectar concentrate 

10ml DI water 

We fed each group with both sources of food: 0.5ml protein-rich liquid food in one tube and 1ml 

carbohydrate-rich liquid food in another tube. We replaced the protein-rich liquid food twice per 

week, and the carbohydrate-rich food once per week. 
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Fig. S1. Frame rate (frames/sec) over time for all trials – each plot is for a different trial. 
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Fig. S2. Relationship between the number of ants in a group (x axis) and the number of ants 

participating in the interaction network (y axis). The relationship between the two is plotted as a 

solid red line (Pearson's correlation: r=0.917, p<0.0001). A one-to-one relationship is plotted as 

a dashed black line for comparison. 
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Table S1. Analysis of Deviance Table for the proportion of ants participation in the interaction 

network as a function of food availability and food type: 

Effect 𝛸2 DF p-value 

Food type 5.771 1 0.016 

Food availability 3.553 1 0.059 

Food type  x Food availability 9.239 1 0.002 

Fig. S3. The proportion of ants participating in social interactions (number of nodes in the 

network divided by number of ants in the group) was close to 1 when ants were fed with 

carbohydrate-rich food and a limited supply of protein-rich food. However, when they were fed 

with an unlimited supply of protein-rich food, not all ants participated in the interaction network. 
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Model comparisons: Best fit model (lowest AIC value) is in bold. 

Table S2. Density. 
Model AIC 

FoodType * Treatment * GroupSize + Frame_rate + (1|Group.ID) -40.0 

FoodType + Treatment + GroupSize + Frame_rate + (1|Group.ID) -45.8 

FoodType * Treatment + GroupSize + Frame_rate + (1|Group.ID) -44.3 

FoodType + Treatment * GroupSize + Frame_rate + (1|Group.ID) -44.1 

FoodType * GroupSize + Treatment + Frame_rate + (1|Group.ID) -44.1 

Table S3. Number of clusters. 
Model AIC 

FoodType * Treatment * GroupSize + Frame_rate + (1|Group.ID) 166.9 

FoodType + Treatment + GroupSize + Frame_rate + (1|Group.ID) 161.4 

FoodType * Treatment + GroupSize + Frame_rate + (1|Group.ID) 162.3 

FoodType + Treatment * GroupSize + Frame_rate + (1|Group.ID) 163.2 

FoodType * GroupSize + Treatment + Frame_rate +  (1|Group.ID) 163.2 

Table S4. Degree 

Model AIC 

FoodType * Treatment * GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4361.8 

FoodType + Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4357.3 

FoodType * Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4355.4 

FoodType + Treatment * GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4359.2 

FoodType * GroupSize + Treatment + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4358.5 

Table S5. Betweenness

Model AIC 

FoodType * Treatment * GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4532.4 

FoodType + Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4527.4 

FoodType * Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4528.8 

FoodType + Treatment * GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4528.8 

FoodType * GroupSize + Treatment + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4528.4 

Table S6. Total distance traveled 

Model AIC 

FoodType * Treatment * GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 22056.5 

FoodType + Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 22050.6 

FoodType * Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 22051.8 

FoodType + Treatment * GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 22051.7 

FoodType * GroupSize + Treatment + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 22052.4 
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Table S7. Comparing models for number of clusters with a linear or polynomial fit to group size 

Model AIC 

FoodType + Treatment + GroupSize + Frame_rate + (1|Group.ID) 161.4 

FoodType + Treatment + GroupSize + GroupSize^2 + Frame_rate + (1|Group.ID) 162.9 

Table S8. Comparing models for degree with a linear or polynomial fit to group size 

Model AIC 

FoodType * Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4355.4 

FoodType * Treatment + GroupSize + GroupSize^2 + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4357 

Table S9. Comparing models for betweeness with a linear or polynomial fit to group size 

Model AIC 

FoodType + Treatment + GroupSize + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4527.4 

FoodType + Treatment + GroupSize + GroupSize^2 + (1|Group.ID) + (1|IndividualID) + (1|Frame_rate) 4528.7 
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