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Density-dependent network structuring 
within and across wild animal systems
 

Theory predicts that high population density leads to more strongly 
connected spatial and social networks, but how local density drives 
individuals’ positions within their networks is unclear. This gap reduces 
our ability to understand and predict density-dependent processes. Here 
we show that density drives greater network connectedness at the scale of 
individuals within wild animal populations. Across 36 datasets of spatial 
and social behaviour in >58,000 individual animals, spanning 30 species 
of fish, reptiles, birds, mammals and insects, 80% of systems exhibit strong 
positive relationships between local density and network centrality. 
However, >80% of relationships are nonlinear and 75% are shallower at 
higher values, indicating saturating trends that probably emerge as a result 
of demographic and behavioural processes that counteract density’s effects. 
These are stronger and less saturating in spatial compared with social 
networks, as individuals become disproportionately spatially connected 
rather than socially connected at higher densities. Consequently, ecological 
processes that depend on spatial connections are probably more density 
dependent than those involving social interactions. These findings suggest 
fundamental scaling rules governing animal social dynamics, which could 
help to predict network structures in novel systems.

The number of individuals occupying a given space (that is, popula-
tion density) is a central factor governing social systems. At higher 
densities, individuals are expected to more frequently share space, 
associate and interact, producing more-connected spatial and social 
networks and thereby influencing downstream processes such as mat-
ing, learning and competition. In particular, density-driven increases 
in network connectedness should provide more opportunities for 
parasites1–5 or information6 to spread between hosts1–4,7. Despite the 
fundamental nature of such density-dependent processes, evidence 
is relatively limited that individuals inhabiting higher-density areas 
have more spatial and social connections. Furthermore, density effects 
should differ for asynchronous space sharing (for example, home range 
overlap (HRO)) versus social associations (for example, den sharing or 
grouping) or interactions (for example, mating or fighting). Although 
several studies have compared animal populations at different densi-
ties to demonstrate variation in social association rates among popu-
lations (for example, refs. 7–9) or groups (for example, refs. 10–12), 

attempts to identify such density effects within continuous populations 
of individuals have been less common (but see refs. 7,13–16) and their 
findings have never been synthesized or compared for spatial and 
social behaviours. We therefore have an incomplete understanding 
of how density, as a fundamental ecological parameter, determines 
socio-spatial dynamics within and across systems. This inhibits our 
ability to identify and predict how changes in density (for example, 
through culling, natural mortality, dispersal or population booms) 
influence downstream processes that depend on shared space and 
social interactions.

The rate at which an individual interacts with conspecifics depends 
on its spatial and social behaviour within the context of the surrounding 
environment and population. Adding more individuals into the same 
space should cause them to more frequently spatially overlap and 
socially associate or interact (Fig. 1). Often, individuals are modelled 
as randomly moving and interacting molecules (using mass action or 
mean field theory). In this conceptualization, direct contact between 
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demographic processes probably change as the density increases, with 
the ultimate consequence of slowing association rates. However, these 
nonlinearities are difficult to examine between populations or species 
because they introduce a range of confounders and have few replicates 
along the density axis2. In contrast, lower densities may provide less 
ability to exert social preferences, but low-density populations may 
be more difficult to study due to (for example) low return on sampling 
investment; alternatively, failure to achieve sufficient interaction rates 
may result in Allee effects and ultimately drive populations towards 
decline28,29.

Characterizing gradients of density across individuals within a 
population offers a workaround to these problems and facilitates an 
appreciation of the fact that interactions occur between individuals 
rather than at the population level. Examining between-individual 
variation is one reason that social network analysis, which allows 
characterization and analysis of individual-level social traits among 
other things, has become so popular in animal ecology in recent 
years30–34. Additionally, recent years have seen substantial growth in 
our understanding of socio-spatial behaviours, including harmoniz-
ing the concepts of spatial and social density2,18,35. Applying network 
analyses coupled with this socio-spatial understanding of density 
could provide an individual-level picture of density’s effects on spatial 

two molecules is analogous to a social interaction or association; rates 
of such interactions are often assumed to increase with density (thus, 
they are density dependent; for example, ref. 17) and/or to be homog-
enous in space (for example, ref. 12). In reality, individuals are unlikely 
to behave and interact randomly in space, and instead will be influenced 
by spatially varying factors including local density18 and competition 
for resources7. Changes in density may cause individuals to alter their 
foraging behaviour19–21, dispersal22,23, social preference or avoidance15,24, 
mating behaviour25 or preferred group size9. In some cases, density 
may have no effect on interaction rates, because individual animals 
alter their behaviour in a density-dependent manner to maintain a 
desired interaction rate26. These and related processes might produce 
strong nonlinearities in density–interaction relationships, which can 
complicate the predictions of density dependence models of pathogen 
transmission2,4,5. For example, individuals or groups may learn to avoid 
where competitors might go, resulting in greater spatial partitioning 
under higher densities27. Nevertheless, nonlinearities such as these are 
poorly understood and rarely considered.

Several wild animal studies have suggested that relationships 
between density and social association rates are often nonlinear and 
saturating7,10–12,15. Such relationships imply that association rates do 
not increase passively with density, but rather that behavioural or 
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Fig. 1 | Outline of how population density drives the formation of spatial and 
social networks. The schematic details the rationale underlying this study, 
using Wytham Wood great tits as an example. In this case, the environment is 
represented by an outline of the woods. Under population density, the points 
represent the locations of individual birds, with some jittering added, and the red 
shading represents local population density. For space use, the different purple 
shades correspond to the home ranges of different individuals. Finally, for social 

interactions, the red lines depict connections among individuals, with each 
individual located at their centroid. Ultimately, one of our main aims is to ask 
whether spatial or social connections generally show a stronger relationship with 
density, partly functioning as a proxy for indirect and direct contact events with 
the potential to transmit pathogens. This framework moves between concepts 
of network and contact formation, traversing behavioural ecology, spatial and 
social network ecology and disease ecology.
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and social connectedness, offering far higher resolution and statisti-
cal power and greater ability to detect within-system nonlinearities 
and between-system differences2. By providing new understanding 
of the correlates and emergent consequences of variation in density, 
this expansion could help to identify general rules underlying social 
structuring and network scaling in space.

Critically, different types of interactions or associations should 
show different relationships with density: for example, the need to 
compete for food at higher densities could drive a disproportion-
ate increase in aggression36, but this is unlikely to be true of mating 
interactions. In contrast, higher density and food scarcity should 
lead to lower exclusivity in resources and more overlapping home 
ranges, thus enhancing the effect of density on the spatial network37. 
This rationale is well understood in disease ecology, as differences in 
density–contact relationships are thought to drive differences in the 
density dependence of infection, where contact is defined as an inter-
action or association that could spread a pathogen (Fig. 1). Contacts 
then form the basis of spatial and social networks used to investigate 
pathogen transmission dynamics, which should likewise diverge with 
density just as contacts do. For example, density should drive greater 
transmission of respiratory pathogens but not sexually transmitted 
pathogens1,38. Establishing these density–contact relationships is 
integral to understanding disease dynamics and developing control 
measures1,39, but we still have a poor understanding of how different 
interactions (and therefore contact events for different pathogens) are 
driven by density. This direct/indirect interaction dichotomy is most 
fundamental to disease ecology35,40, but given building interest in the 
spatial–social interface and relationships between spatial and social 
networks in behavioural ecology18, the framework is readily related to 
other fields (for example, direct versus indirect cues that can lead to 
social learning41). Previously established density–interaction relation-
ships are diverse and include feral dog bites13, ant antennations42 and 
trophallaxis26, ungulate group memberships14,19, rodent co-trapping10,43 
and agamid association patterns15,16, but no study has yet synthesized 
how the rates of multiple interaction or association types relate to 
density, within or across systems.

Identifying the general rules underlying density dependence 
requires quantifying density’s relationship with proxies of interaction 
rates at fine scales across a diversity of systems, then identifying the 
factors determining their slope and shape. To this end, we collated 
a meta-dataset of over 58,000 individual animals across 36 wildlife 
systems globally (Fig. 2) to ask how within-population variation in 
density determines between-individual interaction rates based on 
connectedness in spatial and social networks. We fit multiple com-
peting linear and nonlinear relationships to identify the slope and 
shape of density effects within each system and used meta-analyses to 
investigate general rules determining their slope and shape across sys-
tems. In particular, we focused on comparing space sharing with social 
interactions and associations as a cross-system case study. Ultimately, 
we present a de novo cross-system analysis of individuals’ social and 
spatial behaviour that traverses fields of behavioural, population and 
disease ecology, which could help to inform general rules governing 
the structure of social systems and eventually shape management and 
conservation decisions in a wide range of systems.

Results and discussion
We compiled a comparative meta-dataset of over 14 million observa-
tions of 58,667 individual animals’ spatial and social behaviour, across 
a wide range of ecological systems and taxonomic groups of animals. 
We then ran a standardized pipeline to align their spatial and social 
observations, identifying strong and predictable relationships between 
local density and network connectedness at the individual level.

We observed strong positive relationships between individuals’ 
local population density and their connectedness in spatial and social 
networks across a wide range of wild animals. Of our 64 replicates,  

51 (78%) were significantly positive when analysed using linear models 
(Fig. 3a). Meta-analyses identified a highly significant positive mean 
correlation between density and connectedness, both for social net-
works (estimated r = 0.22; 95% confidence interval (CI) = 0.17 to 0.27) 
and spatial networks (r = 0.45; CI = 0.36 and 0.53; Fig. 3b). Our study 
therefore provides fundamental evidence that high local population 
density broadly drives greater connectedness within ecological sys-
tems, at the individual level. Slopes were highly variable across systems 
for both spatial and social networks (Fig. 3a; Q-test of heterogeneity 
across systems: Q37 = 5,627.33 and Q25 = 1,281.83; both P < 0.0001), 
indicating that quantifying these slopes within and between multiple 
systems and comparing them is important for understanding animal 
socio-spatial structure. That is, relationships between density and indi-
vidual connectedness differ substantially between populations and the 
biological mechanisms underlying these divergent trends are probably 
important. As well as adding resolution and allowing comparisons of 
density effects across systems, our methodology facilitated the fitting 
of nonlinear relationships (using generalized additive models (GAMs); 
see below). This approach has only rarely been applied before, and then 
at much coarser resolution (see refs. 10,11,13). As such, this study fills an 
important empirical gap by providing insights into the slope and shape 
of density–connectedness relationships for a diverse variety of animal 
groups and their social and spatial behaviours (Fig. 4). Nevertheless, 
despite this diversity, we were able to identify several further general 
trends in our data.

Remarkably, density’s effect more than doubled in size for spatial 
compared with social networks (Fig. 3b; r = 0.45 versus 0.22). There 
was a difference of 0.26 (CI = 0.16 to 0.36; P < 0.0001) for this effect 
when we meta-analysed the two contact types together. This finding 
indicates that as density increases, wild animals are more likely to 
share space with each other, but that social connections increase at a 
much slower rate. Similarly, we discovered that saturating shapes were 
extremely common: as density increased, its effect on connectedness 
decreased, such that 48 out of 64 systems (75%) had a steeper slope at 
low density values than at high ones. This effect was strong for both 
social networks (effect on r = −0.11; CI = −0.19 to −0.03; P = 0.01) and 
for spatial networks, with substantial overlap between their estimates 
(r = −0.22; CI = −0.37 to −0.07; P = 0.0042). Due to the greater overall 
effect for space sharing, the latter half of density’s spatial effect was 
still higher than the first half of its social effect (Fig. 3c). Together, these 
observations suggest that density-dependent processes act to limit 
the increase in social connectedness with density, but without limiting 
spatial overlaps to the same extent. Consequently, higher-density areas 
are characterized disproportionately by individuals asynchronously 
sharing space rather than socially associating, whereas in lower-density 
areas individuals are disproportionately more socially connected 
proportional to their shared space.

There are many possible social reasons for saturating nonlinearity 
in density-dependent network structuring. For example, individu-
als in higher-density areas may begin to avoid each other, seeking to 
avoid competition or aggression36 or exposure to infectious disease44. 
Eastern water dragons (Intellagama lesueurii) show greater avoid-
ance at higher densities15, supporting avoidance-related mechanisms. 
Alternatively, in species with high social cognition or stable bonds, 
saturation could reflect lower social effort or inability to keep track of 
social affiliates at higher densities45. In general, individuals probably 
have a preferred social interaction rate or group size—a preference 
that they may increasingly exert at higher densities9. It remains to be 
seen how this preference varies among individuals, and whether indi-
viduals vary in their preferred social network position given a certain 
density. Given that individuals vary in their movement and spatial 
phenotypes46–48 and social phenotypes48–50 in ways that should mani-
fest for density-dependent behaviours specifically18, it seems likely 
that these slopes could vary between individuals as they do between 
populations. Future analyses might fit variable density–connectedness 
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slopes among individuals to identify socio-spatial syndromes across 
systems, as has been done previously in single systems, including 
caribou (Rangifer tarandus)51 and American red squirrels (Tamiasciurus 
hudsonicus)52. Additionally, we could dissect the social network and its 
relationship with the spatial network to identify levels of attraction53,54 
or avoidance55 and how they depend on density.

We considered that density-dependent changes in spatial behav-
iours might explain these trends. For example, density could create 
greater competition over resources and therefore reduce energy to 
roam (and contact others). Individuals may partition their niches56 

or reduce their territory or home range sizes52,57,58, potentially driven 
by years of plentiful resources supporting higher densities alongside 
smaller home ranges sufficiently providing ones’ resource needs, 
which could drive lower association rates. However, our findings do not 
seem to support explanations related to small home ranges because 
such explanations should produce an equivalent or stronger reduc-
tion in (relative) spatial connectedness. In contrast, we observed that 
density drives individuals to become spatially connected faster than 
they become socially connected, such that the underlying mecha-
nisms probably involve behaviours and demographic processes 
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Fig. 2 | Phylogenetic and geographic distributions of the examined datasets 
of spatial and social behaviour and schematic. a,b, Phylogenetic (a) and 
geographic (b) distributions of our 36 examined datasets on spatial and social 
behaviour. The points next to the species’ names in a denote where we had more 
than one population of that species. Note that the Potomac dolphins listed as 
Tursiops truncatus in a following Open Tree of Life nomenclature have since been 
reclassified as Tursiops erebennus. c, Schematic depicting the methodology 

for deriving local density values, using the Isle of Rum red deer data as an 
example. The x and y axes represent bivariate spatial coordinates. Shown are 
raw observations of individuals in space that we then averaged at the individual 
level to make centroids; we used the centroids to generate annual density 
distributions, which were then assigned to individuals in the form of local density 
measures. Animal silhouettes from phylopic.org; details on attribution appear in 
Supplementary Table 2.
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that specifically affect social collocation in space and time. Testing 
the precise underlying mechanism will probably require finer-scale 
behavioural observations, as described below. Regardless of the 
mechanism, these saturating density–connectedness relationships 
strongly support the idea that examining density effects at the indi-
vidual level—rather than between populations—is highly informative. 
For many systems, mean field expectations of homogenous interac-
tions under increasing density probably produce an inaccurate (that 

is, inflated) picture of density’s effects. Importantly, our study included 
many examples of proximity-based social networks—most notably 
gambit-of-the-group measures59—but relatively few direct interac-
tions, such as mating, grooming or fighting. It is interesting that these 
differences manifested even among two ostensibly spatially defined 
contact metrics (gambit of the group and HRO). This observation 
supports the assertion that social association metrics defined by spa-
tiotemporal proximity are valuable for informing on social processes 
separately from more spatial behaviours sensu stricto, such as rang-
ing behaviour14; we expect that more direct interactions could show 
even further differences in relationships with density. Incorporating 
a larger number of direct metric-based systems could help to address 
this question (Supplementary Discussion).

The fact that spatial networks show stronger and more linear 
density dependence than social networks could heavily influence the 
ecology of animal systems. For example, indirectly transmitted (that is, 
environmentally latent) parasites may exhibit greater density depend-
ence than directly transmitted ones, given that individuals probably 
experience disproportionately more indirect contact at higher densi-
ties. This observation contrasts with orthodoxy that directly transmit-
ted parasites are most likely to be density dependent60, and supports 
the value of investigating nonlinear changes in socio-spatial behaviour 
and grouping patterns in response to density when considering density 
dependence. Saturating density–connectedness functions further 
have implications for disease modelling and control. Specifically, our 
findings lend behavioural support to the growing consensus that many 
diseases are density dependent at lower densities, but not at higher 
densities (that is, that the slope flattens with density)17,61. Rather than 
assuming constant behavioural mixing at higher densities, epidemio-
logical models could benefit from incorporating density-dependent 
shifts in behaviours and demography that influence direct and indi-
rect interaction frequencies, as was previously suggested empirically 
and by epidemiological theory17. These relationships could influence 
our targets for culling or vaccination coverage62. Given that animals 
at high density seem likely to have a relatively shallow relationship 
between density and contact rates, reducing the population’s density 
(for example, by culling) might therefore be ineffective at reducing 
pathogen transmission initially, particularly when considering socially 
transmitted pathogens, where contact rates are particularly likely to 
have become saturated (Fig. 3c). Similar problems with culling have 
already been acknowledged in specific systems (for example, in canine 
rabies39,63,64), but our study implies that shallow nonlinear density–con-
tact trends could be more general than was previously thought and 
could be driven by flexible density-dependent changes in behaviour 
and demography. Conversely, culling could be disproportionately 
effective at intermediate densities, such that identifying the inflection 
points of the curve might facilitate the design of optimal management 
strategies. Future studies should investigate whether the divergence 
in spatial and social connectedness with density drives a concurrent 
divergence in the prevalence of directly and indirectly transmitted 
parasites, as well as addressing several other biases in our selection of 
systems (for example, ref. 65; see Supplementary Discussion).

Beyond these general trends, we ran GAMs that revealed that 52 out 
of 64 density effects on network connectedness (81%) were significantly 
nonlinear (change in the Akaike information criterion (ΔAIC) > 2)); 
these relationships took a wide variety of shapes, representing a range 
of nonlinear functions that are difficult to generalize (Fig. 4). Notably, 
although many GAM smooths were eventually significantly negative 
(Fig. 4), the vast majority of linear models fitted to the second half of 
the data were positive (Fig. 3c); this result is probably an artefact of 
restricted model fitting, rather than true downturns in connectedness 
with density. Nonlinearity did not cluster according to connection 
type definitions or according to animal group. These observations 
were largely corroborated by our meta-analytical models, which found 
no factors influencing the slope and shape of density effects overall 
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Fig. 3 | Drivers of variation in linear density effects on individual network 
connectedness. The results are based on a meta-analysis of n = 36 systems 
comprising n = 64 system–behaviour replicates. a, Our fitted linear model 
estimates of density effects on network strength. Each point represents the 
mean estimate from a given system and the error bars denote 95% CIs. Opaque 
error bars represent statistical significance (that is, they do not overlap with 0). 
The estimates are in units of standard deviation for both density and network 
strength. The colour of the point denotes whether the network being examined 
was defined using spatial or social connections. b, Centrality in spatial networks 
(that is, HRO; red points) had a significantly steeper relationship with density 
than that of social networks (blue points). c, We fitted linear models separately 
to two portions of the data within each study population (first and last represent 
values below and above the median). The slopes for the last (pink points) were 
generally less positive than those for first (purple points), implying a general 
saturation shape. In b and c, each coloured point represents a study replicate 
fitted to the strength estimate; points are sized according to sample size and 
jittered slightly on the x axis to reduce overplotting. The large black points 
represent the mean slope estimated from the meta-analysis and the error bars 
represent 95% CIs.
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(P > 0.05; Supplementary Table 3), including no clear phylogenetic 
signal (ΔAIC = 2.71). This observation speaks to the complexity of 
these relationships within and across systems while accentuating 
that simple functional relationships are often likely to be compli-
cated by contravening ecological factors such as habitat selection66,67, 
group formation7, parasite avoidance68 and demographic structur-
ing69. Although we were unable to identify specific between-system 

predictors of the nonlinearity of density–connectedness relationships, 
the finding that most such relationships are strongly nonlinear is an 
important consideration for future work.

Density is a universal factor underlying the dynamics of animal 
populations and its linear and nonlinear effects on spatial and social 
network structure are likely to impact myriad processes in behaviour, 
ecology and evolution. Similar to other studies that have reported 

Multimammate mice
HRO

Mountain Lake mice
Trap proximity

Soay sheep
HRO

Firth of Tay dolphins
Census

Woodchester badgers
Co-trapping

Ein Gedi hyraxes
GOG

Acorn woodpeckers
HRO

Sleepy lizards
HRO

Multimammate mice
Trap proximity

Kielder voles
HRO

Cornish cattle
HRO

Firth of Tay dolphins
HRO

Wytham badgers
Co-trapping

Kenyan elephants
GOG

Vulturine guineafowl
GPS proximity

Chagos sharks
GOG

Falkirk wood mice
Trap proximity

Kielder voles
Trap proximity

Cornish cattle
Proximity collar

Shark Bay dolphins
Census

African dogs
HRO

Kenyan elephants
HRO

Vulturine guineafowl
HRO

Palmyra sharks
GOG

Liverpool wood mice
HRO

Prairie dogs
GOG

Reticulated gira�es
GOG

Shark Bay dolphins
HRO

African dogs
Proximity collar

Golden-crowned sparrows
GOG

Desert tortoises
Den sharing

Palmyra sharks
HRO

Liverpool wood mice
Trap proximity

Rum deer
Dominance

Reticulated gira�es
HRO

Bottlenose whales
Census

Kalahari meerkats
GOG

Golden-crowned sparrows
HRO

Desert tortoises
HRO

Moorea sharks
GOG

Silwood wood mice
Co-trapping

Rum deer
GOG

Moray dolphins
Census

Bottlenose whales
HRO

Kalahari meerkats
HRO

Wytham tits
GOG

Water dragons
Census proximity

Wild crickets
Fighting

Silwood wood mice
HRO

Rum deer
HRO

Moray dolphins
HRO

European boar
HRO

Serengeti lions
Census

Wytham tits
HRO

Water dragons
HRO

Wild crickets
HRO

Wytham wood mice
Co-trapping

Soay sheep
GOG

Potomac dolphins
GOG

European boar
Proximity collar

Serengeti lions
HRO

Acorn woodpeckers
GOG

Sleepy lizards
GPS proximity

Wild crickets
Mating

Density

St
re

ng
th

Animal group Aquatic Bird Carnivore Ectotherm Large herbivore Small mammal

Fig. 4 | Relationships between density and network connectedness. Graphs 
of the relationships between density and network connectedness across 
n = 64 animal systems comprising n = 151,835 individual animals, showing 
substantial variation. The x and y axes represent density (in individuals per 
area) and network connectedness (strength centrality), respectively. The 
values have been standardized to have a mean of 0 and a standard deviation of 
1 within each system. The axis ticks are in units of 1 standard deviation, so are 
self-referential within each panel, and hence we have left the axis tick values 

unlabelled to improve clarity. Each point represents an individual–year–
behaviour replicate. The lines portray model fits from our GAMs. Red, grey and 
blue represent a positive statistically significant relationship, no statistical 
significance or a negative statistically significant relationship, respectively. 
The points are semi-transparent to enhance visibility. The panels are arranged 
phylogenetically following the tree displayed in Fig. 2a. GOG, gambit of the 
group. Animal silhouettes from phylopic.org; details on attribution appear in 
Supplementary Table 2.
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general scaling patterns in network analysis70 and food web ecology71, 
the patterns we report strongly suggest that animal systems gener-
ally become more connected spatially than socially under increasing 
density. These trends might extrapolate to human networks, given 
that other scaling patterns in animal networks do70. As these patterns 
seemingly manifest regardless of animal group and interaction type, 
they may reflect a generalizable rule governing the socio-spatial struc-
ture of ecological systems. Further refinement and implementation 
of these models could facilitate the prediction of network structure 
in new systems.

Finally, this study is relatively unique in that it comprises an expan-
sive meta-analysis of behavioural data from individual animals across 
a diverse selection of systems. As datasets accumulate, comparative 
analyses are increasing in frequency in social network ecology72, but 
they often revolve around analysing whole networks rather than indi-
viduals73 and (to our knowledge) are never performed in conjunction 
with analyses of spatial behaviour. These analyses therefore hold excep-
tional promise for disentangling spatial and social behaviour across 
diverse systems. For example, given that our dataset includes many 
repeatedly sampled known individuals, future analyses could inves-
tigate individual-level repeatability or multi-behaviour behavioural 
syndromes across a variety of different taxa and environments18,74. Addi-
tionally, capitalizing on the wide range of methodological approaches 
to behavioural data collection (for example, censuses, trapping and 
telemetry), the methodological constraints of socio-spatial analy-
ses could be tested in this wide meta-dataset as they have been in 
other recent comparative analyses of wild ungulates75. As well as being 
diverse, our meta-dataset contained several replicate examples of (for 
example) marine mammals and trapped rodents, which could be used 
for finer-scale and more targeted comparative analyses within these 
smaller taxonomic groupings. For now, it is highly encouraging that 
we uncovered general trends across these disparate animal systems, 
and further explorations of these socio-spatial patterns may help to 
inform a wide range of exciting and longstanding questions at the 
spatial–social interface18.

Methods
Data standardization and behavioural pipeline
Data were manipulated and analysed using R version 4.2.3 (ref. 76) 
and all R code is available at https://github.com/gfalbery/DensityM-
etaAnalysis. Our 36 datasets each involved at least one continuous 
uninterrupted spatial distribution of observations in a single popula-
tion; some datasets comprised multiple such populations, all systems 
had at least one social network measure, and two had two different 
types of social interaction. These datasets covered 30 different animal 
species, including sharks, carnivores, cetaceans, ungulates, rodents, 
elephants, birds, reptiles and one orthopteran insect (Fig. 2). In one 
case (the Firth of Tay and Moray dolphins), we used two distinct rep-
licates despite the data relating to overlapping groups of individuals, 
because of their distinct spatial distributions, which made it difficult 
to fit a coherent density distribution.

To standardize the timescale across studies, all systems were ana-
lysed as annual replicates (that is, social and spatial networks were 
summarized within each year). Our analyses used 64 system–behaviour 
replicates (listed in Supplementary Table 1) and totalled 151,835 unique 
system–individual–year–behaviour data points.

All spatial coordinates were converted to the scale of kilometres 
or metres to allow comparison across systems. To provide an approxi-
mation of local density, following previous methodology14,77, we took 
each individual’s average location across the year (their centroid) and 
created a spatial density kernel using the adehabitathr package78, 
which provided a probabilistic distribution of population density 
across each study system based on the local frequencies of observed 
individuals. Each individual was assigned an annual estimate of local 
density based on their centroid’s location within this spatial density 

distribution. We made these density distributions as comparable as 
possible between systems by incorporating the density raster using 
metre squares; however, there were large differences in density across 
populations that were difficult to resolve and put on the same scale 
(for example, interactions per individual per km2 unit of density). 
Consequently, we scaled and centred density to have a mean of zero 
and a standard deviation of one within each population, which allowed 
us to focus on differences in relative slope and shape across systems.

To validate the local density measures estimated using the kernel 
density approach, we also estimated local density for individuals across 
all populations based on the locations of individual annual centroids 
within a designated area. To do so, we first estimated the area of the 
minimum bounding box within which all individuals were censused 
during the study period based on their annual centroids. For each 
individual’s mean location, we then estimated a circular boundary 
of radius = 1/20 multiplied by the the area of the minimum bounding 
box. We then calculated the number of individuals present within this 
boundary as an individual’s local density measure. We estimated the 
Pearson correlation coefficients between the local density measures 
derived using the kernel density estimation approach and the propor-
tional area-based approach (Supplementary Fig. 1).

To provide a measure of asynchronous space sharing, we con-
structed HRO networks based on the proportional overlap of two 
individuals’ minimum convex polygon (that is, the bounding polygon 
around all observations of each individual in a given year). These HRO 
networks were restricted to only individuals with five or more observa-
tions in a given year to allow us to create convex polygons effectively; 
ten out of 36 (28%) systems did not have sufficient sampling for this 
analysis. We also repeated our analyses with a series of higher sampling 
requirements for observation numbers to ensure that our findings were 
robust to this assumption. The minimum convex polygon approach 
is relatively low resolution and assumes uniform space use across an 
individual’s home range; however, this approach is less data intensive 
and less sensitive to assumptions than density kernel-based approaches 
that would estimate variation in space use across the home range, allow-
ing us to apply the models across more systems, more generalizably 
and more conservatively.

To provide a measure of social connectedness, we built social net-
works using the following approaches, as defined by the original stud-
ies: direct observations of dyadic interactions (for example, fighting or 
mating); gambit-of-the-group measures (that is, assessing which ani-
mals are members of the same group)59; co-trapping (that is, analysing 
which animals are trapped together or in adjacent traps within a given 
number of trapping sessions); or using proximity sensors to determine 
the incidence of direct contact (defined by a certain distance-based 
detection threshold). Notably, some analyses use indirect interac-
tions (that is, spatial overlap) to approximate direct interactions. This 
requires spatiotemporal coincidence, which we caution against, par-
ticularly when modelling pathogen transmission35,79. Although the two 
often correlate, here we do not use HRO to approximate direct interac-
tion rates, but rather as a measure of indirect interactions (for example, 
as an indication of the transmission of environmental parasites).

For each social network, we scaled connection strength relative 
to the number of observations of each individual in a dyad (that is, the 
simple ratio index80). Our response variable therefore took the form 
of summed strength centrality, scaled to between 0 and 1 for each 
dyad, for each social and spatial network. We focused on comparing 
density effects on social interactions and associations with density’s 
effects on space sharing.

Density–connectedness models
We developed a workflow to allow us to derive and compare density’s 
effects on connectedness—and their drivers—in a standardized way 
across our animal systems. We fitted models with three main forms: lin-
ear models fitted to the entire dataset; nonlinear generalized additive 
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models fitted to the entire dataset; and linear saturation models fitted 
separately to low- and high-density subsets of each dataset.

Linear models. For each system–behaviour replicate, we first fitted 
a linear model using the lm function in R, fitting scaled density as 
an explanatory variable to estimate linear density effect slopes. The 
linear fits and residuals are displayed in Supplementary Figs. 2 and 3, 
respectively.

GAMs. We fitted GAMs in the mgcv package81 to identify whether each 
density effect was better described by a linear or nonlinear relation-
ship and to identify the shapes of these nonlinear relationships. For 
each model, we fitted a default thin plate spline with k = 4 knots. This 
knot number was selected to reduce overfitting in our models, which 
formed several fits to the data that were difficult to reconcile with 
functional formats. To assess whether nonlinear models fit better 
than linear models, we used AIC, with a contrast of 2ΔAIC designated 
to distinguish between models.

Saturation models. To quantify whether density effects were generally 
saturating (that is, that density had steeper relationships with individu-
als’ connectedness at lower density values), we split the data into two 
portions: all values below the median density value; and all values above 
the median. We then re-ran linear models examining the relationship 
between density and strength in each portion. We attempted to inves-
tigate nonlinear patterns (especially saturating effects) across all of 
our systems using a range of other methods (for example, comparing 
specific functional relationships with nonlinear least squares), but 
found that they were generally incapable of fitting well to the data 
in a standardized way across the many datasets (that is, there was 
non-convergence of nonlinear least squares using semi-automated 
starting estimates across systems). As such, this approach represented 
a tradeoff between tractable, generalizable model fitting, interpret-
ability and accurate representation of the relationship’s shape. All 
else being equal, we posit that investigating the relative slopes of two 
otherwise identical portions of the data is a conservative and informa-
tive method of identifying saturation, which was our main hypothesis 
for the expected shape of density effects.

Heteroskedasticity and log–log models. To ensure that our esti-
mates were robust to non-normality and to provide another source of 
information concerning possible saturation effects, we also conducted 
tests of heteroskedasticity on our linear models and accompanied 
them with simulations and fitted log–log linear models. First, we car-
ried out a simple simulation study to test how (1) the skew in residu-
als, (2) a saturating relationship and (3) heteroskedasticity impact 
whether we may under- or overestimate the slope of an assumed linear 
relationship between density and strength (Supplementary Methods 
section ‘Heteroskedasticity simulations’). These demonstrated that 
our models were resilient to skew and saturating effects, but that het-
eroskedasticity in residuals could drive overestimated linear effects 
in our models.

To examine this possibility further, we derived the Breusch–Pagan 
statistic for each linear model as a measure of heteroskedasticity and 
then plotted it against the meta-analysis covariates and fixed effects. 
There was no evidence that the density effect was being skewed to 
be greater for spatial behaviours due to heteroskedasticity, nor were 
the second portions of the data more heteroskedastic, which would 
be expected if this was driving the saturating effect (Supplementary 
Fig. 4). Finally, we fitted log–log linear models with the same formula-
tions as our main linear models defined above, but with both density 
and strength log(x + 1) transformed, rather than scaled to have a mean 
of 0 and a standard deviation of 1 (Supplementary Fig. 5). Our results 
showed broadly identical findings of greater estimates for spatial 
behaviours, and the fact that the slopes were largely under 1 is indicative 

of a saturating effect. As such, these tests strongly support the resil-
ience of our findings to uneven data distributions.

Meta-analysis
To characterize the typical relative slope of density effects across 
systems and identify the factors influencing their variation, we fitted 
hierarchical meta-analytical models using the metafor package in R. 
The response variable was the standardized slope of the linear density 
effect; because both individual network strength and density were 
scaled to have a mean of 0 and a standard deviation of 1 in the linear 
regression, this was equivalent to the correlation coefficient (r)82. We 
converted all correlation coefficients into Fisher’s Z (Zr) and computed 
the associated sampling variance.

For our hierarchical meta-analysis models, we used an initial 
model that nested observations within a system-level random effect 
to account for within- and between-system heterogeneity83, as 26 of 36 
systems had more than one density effect. We used another random 
effect for species to account for repeat observations per animal species.

We then added a separate random effect for animal phylogeny84. 
This effect used a phylogenetic correlation matrix of our 30 animal 
species derived from the Open Tree of Life via the rotl package85, with 
the ape package used to resolve multichotomies and provide branch 
lengths86.

We then fitted intercept-only models using the rma.mv() function 
with restricted maximum likelihood, weighted by inverse sampling 
variance, and used variance components to quantify I2, the contribu-
tion of true heterogeneity to the total variance in effect size. We used 
Cochran’s Q to test whether such heterogeneity was greater than that 
expected by sampling error alone.

We next fitted models with the same random effects structure that 
included explanatory variables. To detect whether some animals were 
more likely to experience density effects, we fitted animal group as a fac-
tor with six categories, representing a combination of species’ taxonomy 
and general ecology: aquatic (fish and dolphins); birds; large herbivores 
(elephants and ungulates); small mammals (rodents and hyraxes); car-
nivores; and ectotherms (insects and reptiles). We also fitted several 
explanatory variables indicative of greater statistical power that might 
increase the strength of density effects (that is, geographic area (km2; 
log10 transformed); number of years of study; and number of individuals), 
all of which we fitted as continuous covariates. Broadly, the animal group 
model was highly uninformative and competed with the other effects, 
and we expected that the phylogeny would be more informative, so we 
report the results of the model without the animal group effect fitted.

We ran several different versions of these meta-analyses. First, we 
fitted meta-analytical models to the overall linear models of spatial and 
social interaction types separately, and then together, to investigate dif-
ferences between the spatial and social networks in terms of their mean 
density slope. Next, we fitted duplicated versions of these models, but 
with the saturation models. These models were identical, but each sys-
tem replicate had two linear estimates: one taken from the first 50% of 
the data (up to the median); and one taken from the latter 50%. By fitting 
a binary fixed effect of data portion to the meta-analytical models, this 
model would tell us whether the slopes were generally higher in the 
first portion of the data than the last (and therefore showed generally 
saturating shapes). We were unable to fit meta-analytical models to 
our GAMs, as methods for the meta-analysis of nonlinear estimates 
are not yet well defined.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data required to run the meta-analysis models are available from 
Zenodo at https://doi.org/10.5281/zenodo.15847435 (ref. 87) and 
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GitHub at https://github.com/gfalbery/DensityMetaAnalysis. The 36 
behavioural datasets for each study system can be requested from the 
data collectors; requests via the corresponding author will be relayed 
to them.

Code availability
All of the code is available from Zenodo at https://doi.org/10.5281/
zenodo.15847435 (ref. 87) and GitHub at https://github.com/gfalbery/
DensityMetaAnalysis.
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