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Published online: 04 September 2025 Theory predicts that high population density leads to more strongly
connected spatial and social networks, but how local density drives
individuals’ positions within their networks is unclear. This gap reduces

our ability to understand and predict density-dependent processes. Here
we show that density drives greater network connectedness at the scale of
individuals within wild animal populations. Across 36 datasets of spatial
and social behaviourin >58,000 individual animals, spanning 30 species

of fish, reptiles, birds, mammals and insects, 80% of systems exhibit strong
positive relationships between local density and network centrality.
However, >80% of relationships are nonlinear and 75% are shallower at
higher values, indicating saturating trends that probably emerge as aresult
of demographic and behavioural processes that counteract density’s effects.
These are stronger and less saturating in spatial compared with social
networks, as individuals become disproportionately spatially connected
rather than socially connected at higher densities. Consequently, ecological
processes that depend on spatial connections are probably more density
dependent than those involving social interactions. These findings suggest
fundamental scaling rules governing animal social dynamics, which could
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help to predict network structures in novel systems.

The number of individuals occupying a given space (that is, popula-
tion density) is a central factor governing social systems. At higher
densities, individuals are expected to more frequently share space,
associate and interact, producing more-connected spatial and social
networks and thereby influencing downstream processes such as mat-
ing, learning and competition. In particular, density-driven increases
in network connectedness should provide more opportunities for
parasites'™ or information® to spread between hosts'*”. Despite the
fundamental nature of such density-dependent processes, evidence
isrelatively limited that individuals inhabiting higher-density areas
have more spatial and social connections. Furthermore, density effects
should differ for asynchronous space sharing (for example, home range
overlap (HRO)) versus social associations (for example, den sharing or
grouping) or interactions (for example, mating or fighting). Although
several studies have compared animal populations at different densi-
ties to demonstrate variation in social association rates among popu-
lations (for example, refs. 7-9) or groups (for example, refs. 10-12),

attempts to identify such density effects within continuous populations
ofindividuals have been less common (but seerefs. 7,13-16) and their
findings have never been synthesized or compared for spatial and
social behaviours. We therefore have an incomplete understanding
of how density, as a fundamental ecological parameter, determines
socio-spatial dynamics within and across systems. This inhibits our
ability to identify and predict how changes in density (for example,
through culling, natural mortality, dispersal or population booms)
influence downstream processes that depend on shared space and
social interactions.

Therateatwhichanindividualinteracts with conspecifics depends
onitsspatialand socialbehaviour within the context of the surrounding
environment and population. Adding more individuals into the same
space should cause them to more frequently spatially overlap and
socially associate or interact (Fig. 1). Often, individuals are modelled
asrandomly moving and interacting molecules (using mass action or
mean field theory). In this conceptualization, direct contact between
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Fig. 1| Outline of how population density drives the formation of spatial and
social networks. The schematic details the rationale underlying this study,

using Wytham Wood great tits as an example. In this case, the environment is
represented by an outline of the woods. Under population density, the points
represent the locations of individual birds, with somejittering added, and the red
shading represents local population density. For space use, the different purple
shades correspond to the home ranges of different individuals. Finally, for social
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interactions, the red lines depict connections among individuals, with each
individual located at their centroid. Ultimately, one of our main aims is to ask
whether spatial or social connections generally show a stronger relationship with
density, partly functioning as a proxy for indirect and direct contact events with
the potential to transmit pathogens. This framework moves between concepts
of network and contact formation, traversing behavioural ecology, spatial and
social network ecology and disease ecology.

twomoleculesis analogous to asocialinteraction or association; rates
of suchinteractions are often assumed to increase with density (thus,
they are density dependent; for example, ref.17) and/or to be homog-
enousinspace (forexample, ref.12). Inreality, individuals are unlikely
tobehave andinteract randomlyinspace, and instead willbeinfluenced
by spatially varying factors including local density™ and competition
for resources’. Changes in density may cause individuals to alter their
foraging behaviour”?, dispersal*>**, social preference or avoidance™**,
mating behaviour® or preferred group size’. In some cases, density
may have no effect on interaction rates, because individual animals
alter their behaviour in a density-dependent manner to maintain a
desired interactionrate®. These and related processes might produce
strong nonlinearities in density-interaction relationships, which can
complicate the predictions of density dependence models of pathogen
transmission”**. For example, individuals or groups may learn to avoid
where competitors might go, resulting in greater spatial partitioning
under higher densities”. Nevertheless, nonlinearities such as these are
poorly understood and rarely considered.

Several wild animal studies have suggested that relationships
between density and social association rates are often nonlinear and
saturating”'°"'>", Such relationships imply that association rates do
not increase passively with density, but rather that behavioural or

demographic processes probably change as the density increases, with
the ultimate consequence of slowing association rates. However, these
nonlinearities are difficult to examine between populations or species
because theyintroduce arange of confounders and have few replicates
along the density axis’. In contrast, lower densities may provide less
ability to exert social preferences, but low-density populations may
be more difficult to study due to (for example) low return on sampling
investment; alternatively, failure to achieve sufficientinteraction rates
may result in Allee effects and ultimately drive populations towards
decline®?,

Characterizing gradients of density across individuals within a
population offers a workaround to these problems and facilitates an
appreciation of the fact that interactions occur between individuals
rather than at the population level. Examining between-individual
variation is one reason that social network analysis, which allows
characterization and analysis of individual-level social traits among
other things, has become so popular in animal ecology in recent
years®®*, Additionally, recent years have seen substantial growth in
our understanding of socio-spatial behaviours, including harmoniz-
ing the concepts of spatial and social density>'**. Applying network
analyses coupled with this socio-spatial understanding of density
could provide anindividual-level picture of density’s effects on spatial
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and social connectedness, offering far higher resolution and statisti-
cal power and greater ability to detect within-system nonlinearities
and between-system differences®. By providing new understanding
of the correlates and emergent consequences of variation in density,
this expansion could help to identify general rules underlying social
structuring and network scaling in space.

Critically, different types of interactions or associations should
show different relationships with density: for example, the need to
compete for food at higher densities could drive a disproportion-
ate increase in aggression®®, but this is unlikely to be true of mating
interactions. In contrast, higher density and food scarcity should
lead to lower exclusivity in resources and more overlapping home
ranges, thus enhancing the effect of density on the spatial network®.
This rationale is well understood in disease ecology, as differences in
density-contact relationships are thought to drive differences in the
density dependence of infection, where contactis defined as aninter-
action or association that could spread a pathogen (Fig. 1). Contacts
then form the basis of spatial and social networks used to investigate
pathogen transmission dynamics, which should likewise diverge with
density justas contacts do. For example, density should drive greater
transmission of respiratory pathogens but not sexually transmitted
pathogens'*. Establishing these density-contact relationships is
integral to understanding disease dynamics and developing control
measures™”, but we still have a poor understanding of how different
interactions (and therefore contact events for different pathogens) are
driven by density. This direct/indirect interaction dichotomy is most
fundamental to disease ecology**°, but given building interest in the
spatial-social interface and relationships between spatial and social
networksinbehavioural ecology', the framework is readily related to
other fields (for example, direct versus indirect cues that can lead to
social learning*). Previously established density-interaction relation-
ships are diverse and include feral dog bites”, ant antennations** and
trophallaxis®, ungulate group memberships'*’, rodent co-trapping'®*
and agamid association patterns™'®, but no study has yet synthesized
how the rates of multiple interaction or association types relate to
density, within or across systems.

Identifying the general rules underlying density dependence
requires quantifying density’s relationship with proxies of interaction
rates at fine scales across a diversity of systems, then identifying the
factors determining their slope and shape. To this end, we collated
a meta-dataset of over 58,000 individual animals across 36 wildlife
systems globally (Fig. 2) to ask how within-population variation in
density determines between-individual interaction rates based on
connectedness in spatial and social networks. We fit multiple com-
peting linear and nonlinear relationships to identify the slope and
shape of density effects within each system and used meta-analyses to
investigate general rules determining their slope and shape across sys-
tems. In particular, we focused on comparing space sharing with social
interactions and associations as a cross-system case study. Ultimately,
we present a de novo cross-system analysis of individuals’ social and
spatial behaviour that traverses fields of behavioural, population and
disease ecology, which could help to inform general rules governing
the structure of social systems and eventually shape management and
conservation decisions in awide range of systems.

Results and discussion
We compiled a comparative meta-dataset of over 14 million observa-
tions of 58,667 individual animals’ spatial and social behaviour, across
awide range of ecological systems and taxonomic groups of animals.
We then ran a standardized pipeline to align their spatial and social
observations, identifying strong and predictable relationships between
local density and network connectedness at the individual level.

We observed strong positive relationships between individuals’
local population density and their connectednessin spatial and social
networks across a wide range of wild animals. Of our 64 replicates,

51(78%) were significantly positive when analysed using linear models
(Fig. 3a). Meta-analyses identified a highly significant positive mean
correlation between density and connectedness, both for social net-
works (estimated r = 0.22; 95% confidence interval (CI) = 0.17 to 0.27)
and spatial networks (r=0.45; ClI = 0.36 and 0.53; Fig. 3b). Our study
therefore provides fundamental evidence that high local population
density broadly drives greater connectedness within ecological sys-
tems, at theindividuallevel. Slopes were highly variable across systems
for both spatial and social networks (Fig. 3a; Q-test of heterogeneity
across systems: Qs; =5,627.33 and Q,;=1,281.83; both P< 0.0001),
indicating that quantifying these slopes within and between multiple
systems and comparing them is important for understanding animal
socio-spatial structure. Thatis, relationships between density and indi-
vidual connectedness differ substantially between populations and the
biological mechanismsunderlying these divergent trends are probably
important. As well as adding resolution and allowing comparisons of
density effects across systems, our methodology facilitated the fitting
of nonlinear relationships (using generalized additive models (GAMs);
seebelow). Thisapproach hasonlyrarely beenapplied before, and then
atmuch coarser resolution (see refs.10,11,13). As such, this study fillsan
important empirical gap by providing insights into the slope and shape
of density-connectednessrelationships for adiverse variety of animal
groups and their social and spatial behaviours (Fig. 4). Nevertheless,
despite this diversity, we were able to identify several further general
trendsinour data.

Remarkably, density’s effect more than doubled in size for spatial
compared with social networks (Fig. 3b; r = 0.45 versus 0.22). There
was a difference of 0.26 (Cl = 0.16 to 0.36; P < 0.0001) for this effect
when we meta-analysed the two contact types together. This finding
indicates that as density increases, wild animals are more likely to
share space with each other, but that social connections increase at a
much slower rate. Similarly, we discovered that saturating shapes were
extremely common: as density increased, its effect on connectedness
decreased, such that 48 out of 64 systems (75%) had a steeper slope at
low density values than at high ones. This effect was strong for both
social networks (effect on r=-0.11; CI=-0.19 to -0.03; P=0.01) and
for spatial networks, with substantial overlap between their estimates
(r=-0.22; CI=-0.37 to -0.07; P=0.0042). Due to the greater overall
effect for space sharing, the latter half of density’s spatial effect was
still higher than the first half of its social effect (Fig. 3¢c). Together, these
observations suggest that density-dependent processes act to limit
theincreaseinsocial connectedness with density, but without limiting
spatial overlaps to the same extent. Consequently, higher-density areas
are characterized disproportionately by individuals asynchronously
sharing space rather thansocially associating, whereasin lower-density
areas individuals are disproportionately more socially connected
proportional to their shared space.

There are many possible social reasons for saturating nonlinearity
in density-dependent network structuring. For example, individu-
als in higher-density areas may begin to avoid each other, seeking to
avoid competition or aggression®® or exposure to infectious disease*.
Eastern water dragons (/ntellagama lesueurii) show greater avoid-
anceat higher densities”, supporting avoidance-related mechanisms.
Alternatively, in species with high social cognition or stable bonds,
saturation could reflect lower social effort or inability to keep track of
social affiliates at higher densities®. In general, individuals probably
have a preferred social interaction rate or group size—a preference
that they may increasingly exert at higher densities’. It remains to be
seen how this preference varies amongindividuals, and whether indi-
viduals vary in their preferred social network position given a certain
density. Given that individuals vary in their movement and spatial
phenotypes*®*® and social phenotypes*®° in ways that should mani-
fest for density-dependent behaviours specifically’, it seems likely
that these slopes could vary between individuals as they do between
populations. Future analyses might fit variable density-connectedness
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Fig. 2| Phylogenetic and geographic distributions of the examined datasets
of spatial and social behaviour and schematic. a,b, Phylogenetic (a) and
geographic (b) distributions of our 36 examined datasets on spatial and social
behaviour. The points next to the species’ names ina denote where we had more
than one population of that species. Note that the Potomac dolphins listed as
Tursiops truncatusin afollowing Open Tree of Life nomenclature have since been
reclassified as Tursiops erebennus. ¢, Schematic depicting the methodology
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for deriving local density values, using the Isle of Rum red deer dataas an
example. The xandy axes represent bivariate spatial coordinates. Shown are

raw observations of individuals in space that we then averaged at the individual
level to make centroids; we used the centroids to generate annual density
distributions, which were then assigned to individuals in the form of local density
measures. Animal silhouettes from phylopic.org; details on attribution appear in
Supplementary Table 2.

slopes among individuals to identify socio-spatial syndromes across
systems, as has been done previously in single systems, including
caribou (Rangifer tarandus)’ and Americanred squirrels (Tamiasciurus
hudsonicus)*. Additionally, we could dissect the social network and its
relationship with the spatial network to identify levels of attraction®***
oravoidance® and how they depend on density.

We considered that density-dependent changesin spatial behav-
iours might explain these trends. For example, density could create
greater competition over resources and therefore reduce energy to
roam (and contact others). Individuals may partition their niches*®

or reduce their territory or home range sizes*>*’*%, potentially driven

by years of plentiful resources supporting higher densities alongside
smaller home ranges sufficiently providing ones’ resource needs,
which could drive lower association rates. However, our findings do not
seem to support explanations related to small home ranges because
such explanations should produce an equivalent or stronger reduc-
tionin (relative) spatial connectedness. In contrast, we observed that
density drives individuals to become spatially connected faster than
they become socially connected, such that the underlying mecha-
nisms probably involve behaviours and demographic processes
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Fig. 3| Drivers of variation in linear density effects on individual network
connectedness. The results are based on a meta-analysis of n = 36 systems
comprising n = 64 system-behaviour replicates. a, Our fitted linear model
estimates of density effects on network strength. Each point represents the
mean estimate from a given system and the error bars denote 95% Cls. Opaque
error bars represent statistical significance (that is, they do not overlap with 0).
The estimates are in units of standard deviation for both density and network
strength. The colour of the point denotes whether the network being examined
was defined using spatial or social connections. b, Centrality in spatial networks
(thatis, HRO; red points) had a significantly steeper relationship with density
than that of social networks (blue points). ¢, We fitted linear models separately
to two portions of the data within each study population (first and last represent
values below and above the median). The slopes for the last (pink points) were
generally less positive than those for first (purple points), implying a general
saturation shape.Inbandc, each coloured point represents astudy replicate
fitted to the strength estimate; points are sized according to sample size and
jittered slightly on the x axis to reduce overplotting. The large black points
represent the mean slope estimated from the meta-analysis and the error bars
represent 95% Cls.

that specifically affect social collocation in space and time. Testing
the precise underlying mechanism will probably require finer-scale
behavioural observations, as described below. Regardless of the
mechanism, these saturating density-connectedness relationships
strongly support the idea that examining density effects at the indi-
viduallevel—-rather thanbetween populations—is highly informative.
For many systems, mean field expectations of homogenous interac-
tions under increasing density probably produce an inaccurate (that

is, inflated) picture of density’s effects. Importantly, our study included
many examples of proximity-based social networks—most notably
gambit-of-the-group measures*—but relatively few direct interac-
tions, such as mating, grooming or fighting. Itisinteresting that these
differences manifested even among two ostensibly spatially defined
contact metrics (gambit of the group and HRO). This observation
supports the assertion that social association metrics defined by spa-
tiotemporal proximity are valuable for informing on social processes
separately from more spatial behaviours sensu stricto, such as rang-
ing behaviour™; we expect that more direct interactions could show
even further differences in relationships with density. Incorporating
alarger number of direct metric-based systems could help to address
this question (Supplementary Discussion).

The fact that spatial networks show stronger and more linear
density dependence than social networks could heavily influence the
ecology of animal systems. For example, indirectly transmitted (that s,
environmentally latent) parasites may exhibit greater density depend-
ence than directly transmitted ones, given that individuals probably
experience disproportionately more indirect contact at higher densi-
ties. This observation contrasts with orthodoxy that directly transmit-
ted parasites are most likely to be density dependent®, and supports
the value of investigating nonlinear changes in socio-spatial behaviour
and grouping patternsinresponse to density when considering density
dependence. Saturating density-connectedness functions further
haveimplications for disease modelling and control. Specifically, our
findings lend behavioural support to the growing consensus that many
diseases are density dependent at lower densities, but not at higher
densities (that is, that the slope flattens with density)'”*'. Rather than
assuming constant behavioural mixing at higher densities, epidemio-
logical models could benefit from incorporating density-dependent
shifts in behaviours and demography that influence direct and indi-
rectinteraction frequencies, as was previously suggested empirically
and by epidemiological theory”. These relationships could influence
our targets for culling or vaccination coverage®. Given that animals
at high density seem likely to have a relatively shallow relationship
between density and contact rates, reducing the population’s density
(for example, by culling) might therefore be ineffective at reducing
pathogen transmission initially, particularly when considering socially
transmitted pathogens, where contact rates are particularly likely to
have become saturated (Fig. 3¢c). Similar problems with culling have
already been acknowledged in specific systems (for example, in canine
rabies®*****), but our study implies that shallow nonlinear density—con-
tact trends could be more general than was previously thought and
could be driven by flexible density-dependent changes in behaviour
and demography. Conversely, culling could be disproportionately
effective atintermediate densities, such that identifying the inflection
points of the curve might facilitate the design of optimal management
strategies. Future studies should investigate whether the divergence
in spatial and social connectedness with density drives a concurrent
divergence in the prevalence of directly and indirectly transmitted
parasites, as well asaddressing several other biases in our selection of
systems (for example, ref. 65; see Supplementary Discussion).

Beyond these general trends, we ran GAMs that revealed that 52 out
of 64 density effects on network connectedness (81%) were significantly
nonlinear (change in the Akaike information criterion (AAIC) > 2));
these relationshipstook awide variety of shapes, representing arange
of nonlinear functions that are difficult to generalize (Fig. 4). Notably,
although many GAM smooths were eventually significantly negative
(Fig. 4), the vast majority of linear models fitted to the second half of
the data were positive (Fig. 3¢); this result is probably an artefact of
restricted model fitting, rather than true downturns in connectedness
with density. Nonlinearity did not cluster according to connection
type definitions or according to animal group. These observations
were largely corroborated by our meta-analytical models, which found
no factors influencing the slope and shape of density effects overall
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n =64 animal systems comprising n =151,835 individual animals, showing
substantial variation. The x and y axes represent density (in individuals per
area) and network connectedness (strength centrality), respectively. The
values have been standardized to have amean of 0 and a standard deviation of
1within each system. The axis ticks are in units of 1 standard deviation, so are
self-referential within each panel, and hence we have left the axis tick values

unlabelled to improve clarity. Each point represents an individual-year-
behaviour replicate. The lines portray model fits from our GAMs. Red, grey and
blue represent a positive statistically significant relationship, no statistical
significance or a negative statistically significant relationship, respectively.
The points are semi-transparent to enhance visibility. The panels are arranged
phylogenetically following the tree displayed in Fig. 2a. GOG, gambit of the
group. Animal silhouettes from phylopic.org; details on attribution appear in
Supplementary Table 2.

(P>0.05; Supplementary Table 3), including no clear phylogenetic
signal (AAIC =2.71). This observation speaks to the complexity of
these relationships within and across systems while accentuating
that simple functional relationships are often likely to be compli-
cated by contravening ecological factors such as habitat selection®®?,
group formation’, parasite avoidance®® and demographic structur-

ing®. Although we were unable to identify specific between-system

predictors of the nonlinearity of density-connectedness relationships,
the finding that most such relationships are strongly nonlinear is an
important consideration for future work.

Density is a universal factor underlying the dynamics of animal
populations and its linear and nonlinear effects on spatial and social
network structure are likely toimpact myriad processes in behaviour,
ecology and evolution. Similar to other studies that have reported
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general scaling patterns in network analysis’ and food web ecology”,
the patterns we report strongly suggest that animal systems gener-
ally become more connected spatially than socially under increasing
density. These trends might extrapolate to human networks, given
that other scaling patterns in animal networks do’. As these patterns
seemingly manifest regardless of animal group and interaction type,
they may reflect ageneralizable rule governing the socio-spatial struc-
ture of ecological systems. Further refinement and implementation
of these models could facilitate the prediction of network structure
innew systems.

Finally, this study isrelatively unique in that it comprises an expan-
sive meta-analysis of behavioural data fromindividual animals across
a diverse selection of systems. As datasets accumulate, comparative
analyses are increasing in frequency in social network ecology’?, but
they often revolve around analysing whole networks rather than indi-
viduals™and (to our knowledge) are never performed in conjunction
withanalyses of spatial behaviour. These analyses therefore hold excep-
tional promise for disentangling spatial and social behaviour across
diverse systems. For example, given that our dataset includes many
repeatedly sampled known individuals, future analyses could inves-
tigate individual-level repeatability or multi-behaviour behavioural
syndromes across a variety of different taxa and environments'®”*. Addi-
tionally, capitalizing on the wide range of methodological approaches
to behavioural data collection (for example, censuses, trapping and
telemetry), the methodological constraints of socio-spatial analy-
ses could be tested in this wide meta-dataset as they have been in
other recent comparative analyses of wild ungulates”. As well as being
diverse, our meta-dataset contained several replicate examples of (for
example) marine mammals and trapped rodents, which could be used
for finer-scale and more targeted comparative analyses within these
smaller taxonomic groupings. For now, it is highly encouraging that
we uncovered general trends across these disparate animal systems,
and further explorations of these socio-spatial patterns may help to
inform a wide range of exciting and longstanding questions at the
spatial-social interface'.

Methods

Data standardization and behavioural pipeline

Data were manipulated and analysed using R version 4.2.3 (ref. 76)
and all R code is available at https://github.com/gfalbery/DensityM-
etaAnalysis. Our 36 datasets each involved at least one continuous
uninterrupted spatial distribution of observations in a single popula-
tion; some datasets comprised multiple such populations, all systems
had at least one social network measure, and two had two different
types of social interaction. These datasets covered 30 different animal
species, including sharks, carnivores, cetaceans, ungulates, rodents,
elephants, birds, reptiles and one orthopteran insect (Fig. 2). In one
case (the Firth of Tay and Moray dolphins), we used two distinct rep-
licates despite the data relating to overlapping groups of individuals,
because of their distinct spatial distributions, which made it difficult
to fit acoherent density distribution.

To standardize the timescale across studies, all systems were ana-
lysed as annual replicates (that is, social and spatial networks were
summarized withineachyear). Our analyses used 64 system-behaviour
replicates (listed in Supplementary Table 1) and totalled 151,835 unique
system-individual-year-behaviour data points.

All spatial coordinates were converted to the scale of kilometres
or metres to allow comparison across systems. To provide an approxi-
mation of local density, following previous methodology'”’, we took
eachindividual’saverage location across the year (their centroid) and
created a spatial density kernel using the adehabitathr package’®,
which provided a probabilistic distribution of population density
across each study system based on the local frequencies of observed
individuals. Each individual was assigned an annual estimate of local
density based on their centroid’s location within this spatial density

distribution. We made these density distributions as comparable as
possible between systems by incorporating the density raster using
metre squares; however, there were large differences in density across
populations that were difficult to resolve and put on the same scale
(for example, interactions per individual per km? unit of density).
Consequently, we scaled and centred density to have a mean of zero
and astandard deviation of one within each population, which allowed
usto focus ondifferencesinrelative slope and shape across systems.

Tovalidate the local density measures estimated using the kernel
density approach, we also estimated local density for individuals across
all populations based on the locations of individual annual centroids
within a designated area. To do so, we first estimated the area of the
minimum bounding box within which all individuals were censused
during the study period based on their annual centroids. For each
individual’s mean location, we then estimated a circular boundary
of radius =1/20 multiplied by the the area of the minimum bounding
box. Wethen calculated the number of individuals present within this
boundary as an individual’s local density measure. We estimated the
Pearson correlation coefficients between the local density measures
derived using the kernel density estimation approach and the propor-
tional area-based approach (Supplementary Fig.1).

To provide a measure of asynchronous space sharing, we con-
structed HRO networks based on the proportional overlap of two
individuals’ minimum convex polygon (that s, the bounding polygon
around all observations of each individualin a given year). These HRO
networkswere restricted to only individuals with five or more observa-
tionsinagiven year to allow us to create convex polygons effectively;
ten out of 36 (28%) systems did not have sufficient sampling for this
analysis. We also repeated our analyses with aseries of higher sampling
requirements for observation numbers to ensure that our findings were
robust to this assumption. The minimum convex polygon approach
is relatively low resolution and assumes uniform space use across an
individual’s home range; however, this approachis less dataintensive
and less sensitive to assumptions than density kernel-based approaches
thatwould estimate variationin space use across the home range, allow-
ing us to apply the models across more systems, more generalizably
and more conservatively.

To provide ameasure of social connectedness, we built social net-
works using the following approaches, as defined by the original stud-
ies: direct observations of dyadicinteractions (for example, fighting or
mating); gambit-of-the-group measures (that is, assessing which ani-
mals are members of the same group)*’; co-trapping (thatis, analysing
which animals are trapped together orinadjacent traps withinagiven
number of trapping sessions); or using proximity sensors to determine
the incidence of direct contact (defined by a certain distance-based
detection threshold). Notably, some analyses use indirect interac-
tions (thatis, spatial overlap) to approximate directinteractions. This
requires spatiotemporal coincidence, which we caution against, par-
ticularly when modelling pathogen transmission®”°. Although the two
often correlate, here we do not use HRO to approximate direct interac-
tionrates, butrather asameasure of indirectinteractions (forexample,
asanindication of the transmission of environmental parasites).

For each social network, we scaled connection strength relative
tothe number of observations of eachindividualinadyad (thatis, the
simple ratio index®°). Our response variable therefore took the form
of summed strength centrality, scaled to between 0 and 1 for each
dyad, for each social and spatial network. We focused on comparing
density effects on social interactions and associations with density’s
effects on space sharing.

Density-connectedness models

We developed a workflow to allow us to derive and compare density’s
effects on connectedness—and their drivers—in a standardized way
across our animal systems. We fitted models with three main forms: lin-
ear modelsfitted to the entire dataset; nonlinear generalized additive
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modelsfitted to the entire dataset; and linear saturation models fitted
separately to low- and high-density subsets of each dataset.

Linear models. For each system-behaviour replicate, we first fitted
a linear model using the Im function in R, fitting scaled density as
an explanatory variable to estimate linear density effect slopes. The
linear fits and residuals are displayed in Supplementary Figs.2 and 3,
respectively.

GAMs. We fitted GAMs in the mgcv package® to identify whether each
density effect was better described by a linear or nonlinear relation-
ship and to identify the shapes of these nonlinear relationships. For
each model, we fitted a default thin plate spline with k=4 knots. This
knot number was selected to reduce overfitting in our models, which
formed several fits to the data that were difficult to reconcile with
functional formats. To assess whether nonlinear models fit better
than linear models, we used AIC, with a contrast of 2AAIC designated
to distinguish between models.

Saturation models. To quantify whether density effects were generally
saturating (thatis, that density had steeper relationships with individu-
als’ connectedness at lower density values), we split the data into two
portions:all values below the median density value; and all values above
the median. We then re-ran linear models examining the relationship
between density and strengthin each portion. We attempted toinves-
tigate nonlinear patterns (especially saturating effects) across all of
our systems using a range of other methods (for example, comparing
specific functional relationships with nonlinear least squares), but
found that they were generally incapable of fitting well to the data
in a standardized way across the many datasets (that is, there was
non-convergence of nonlinear least squares using semi-automated
starting estimates across systems). As such, thisapproach represented
atradeoff between tractable, generalizable model fitting, interpret-
ability and accurate representation of the relationship’s shape. All
else being equal, we posit that investigating the relative slopes of two
otherwise identical portions of the datais a conservative and informa-
tive method of identifying saturation, which was our main hypothesis
for the expected shape of density effects.

Heteroskedasticity and log-log models. To ensure that our esti-
mates were robust to non-normality and to provide another source of
information concerning possible saturation effects, we also conducted
tests of heteroskedasticity on our linear models and accompanied
them withsimulations and fitted log-log linear models. First, we car-
ried out a simple simulation study to test how (1) the skew in residu-
als, (2) a saturating relationship and (3) heteroskedasticity impact
whether we may under- or overestimate the slope of an assumed linear
relationship between density and strength (Supplementary Methods
section ‘Heteroskedasticity simulations’). These demonstrated that
our models wereresilient to skew and saturating effects, but that het-
eroskedasticity in residuals could drive overestimated linear effects
inour models.

To examine this possibility further, we derived the Breusch-Pagan
statistic for each linear model as a measure of heteroskedasticity and
then plotted it against the meta-analysis covariates and fixed effects.
There was no evidence that the density effect was being skewed to
be greater for spatial behaviours due to heteroskedasticity, nor were
the second portions of the data more heteroskedastic, which would
be expected if this was driving the saturating effect (Supplementary
Fig.4).Finally, we fitted log-loglinear models with the same formula-
tions as our main linear models defined above, but with both density
andstrengthlog(x +1) transformed, rather thanscaled to have amean
of 0 and a standard deviation of 1 (Supplementary Fig. 5). Our results
showed broadly identical findings of greater estimates for spatial
behaviours, and the fact that the slopes were largely underlis indicative

of a saturating effect. As such, these tests strongly support the resil-
ience of our findings to uneven data distributions.

Meta-analysis

To characterize the typical relative slope of density effects across
systems and identify the factors influencing their variation, we fitted
hierarchical meta-analytical models using the metafor package in R.
Theresponse variable was the standardized slope of the linear density
effect; because both individual network strength and density were
scaled to have a mean of 0 and a standard deviation of 1in the linear
regression, this was equivalent to the correlation coefficient (r)*’. We
converted all correlation coefficients into Fisher’s Z(Z,) and computed
the associated sampling variance.

For our hierarchical meta-analysis models, we used an initial
model that nested observations within a system-level random effect
to account for within- and between-system heterogeneity®’, as 26 of 36
systems had more than one density effect. We used another random
effect for speciestoaccount for repeat observations per animal species.

We then added a separate random effect for animal phylogeny®*.
This effect used a phylogenetic correlation matrix of our 30 animal
species derived from the Open Tree of Life via the rotl package®, with
the ape package used to resolve multichotomies and provide branch
lengths®.

We thenfitted intercept-only models using the rma.mv() function
with restricted maximum likelihood, weighted by inverse sampling
variance, and used variance components to quantify /%, the contribu-
tion of true heterogeneity to the total variance in effect size. We used
Cochran’s Qto test whether such heterogeneity was greater than that
expected by sampling error alone.

We next fitted models with the same random effects structure that
included explanatory variables. To detect whether some animals were
morelikely to experience density effects, we fitted animal group asafac-
torwithsix categories, representing acombination of species’ taxonomy
and general ecology: aquatic (fishand dolphins); birds; large herbivores
(elephants and ungulates); small mammals (rodents and hyraxes); car-
nivores; and ectotherms (insects and reptiles). We also fitted several
explanatory variables indicative of greater statistical power that might
increase the strength of density effects (that is, geographic area (km?;
log,, transformed); number of years of study; and number of individuals),
allof which wefitted as continuous covariates. Broadly, the animal group
model was highly uninformative and competed with the other effects,
and we expected that the phylogeny would be more informative, so we
report the results of the model without the animal group effect fitted.

Weranseveral different versions of these meta-analyses. First, we
fitted meta-analyticalmodels to the overall linear models of spatial and
socialinteraction types separately, and then together, to investigate dif*-
ferences between the spatial and social networks interms of their mean
density slope. Next, we fitted duplicated versions of these models, but
with the saturation models. These models were identical, but each sys-
temreplicate had two linear estimates: one taken from the first 50% of
the data (up tothe median); and one taken fromthe latter 50%. By fitting
abinaryfixed effect of data portion to the meta-analytical models, this
model would tell us whether the slopes were generally higher in the
first portion of the data than the last (and therefore showed generally
saturating shapes). We were unable to fit meta-analytical models to
our GAMs, as methods for the meta-analysis of nonlinear estimates
are not yet well defined.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datarequired to run the meta-analysis models are available from
Zenodo at https://doi.org/10.5281/zenodo0.15847435 (ref. 87) and
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GitHub at https://github.com/gfalbery/DensityMetaAnalysis. The 36
behavioural datasets for each study system canbe requested fromthe
datacollectors; requests via the corresponding author will be relayed
tothem.

Code availability

All of the code is available from Zenodo at https://doi.org/10.5281/
zenodo.15847435 (ref. 87) and GitHub at https://github.com/gfalbery/
DensityMetaAnalysis.
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