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Abstract
1.	 Human activities are endangering animal species globally, and implementing ef-

fective conservation strategies requires understanding animal behaviour and 
ecology. Advancements in GPS tracking technology, accelerometry and machine 
learning algorithms are allowing the in situ study of animal movement and behav-
iour remotely. However, the challenge of building supervised machine learning 
algorithms and collecting the large datasets required to train them is hampering 
the widespread use of these tools. Additionally, the reliability of these models in 
classifying unobserved behaviours is rarely validated, resulting in possible clas-
sification errors.

2.	 We built a supervised accelerometer-based behavioural classification model for 
griffon vultures (Gyps fulvus). Similarly to most other avian scavenger populations 
worldwide, griffons are critically endangered in Israel and neighbouring countries, 
mostly due to feeding on poisoned carcasses. Thus, identifying this scavenger's 
feeding behaviour and foraging areas is crucial for their conservation.

3.	 We trained a Random Forest model on acceleration data of 14 captive and 17 
free-roaming griffons. We classified 5783 behavioural observations into 6 classes: 
feeding, lying, standing, other ground behaviours, flapping and soaring flight. 
The model performed well (0.96 accuracy, 0.89 precision and 0.82 recall) and, 
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1  |  INTRODUC TION

Anthropogenic activities are endangering animals around the world 
(Venter et  al.,  2016). To combat the current wave of species ex-
tinction, we need to understand animal behaviour and ecology to 
minimize threats and conflicts, and to implement effective conser-
vation strategies (Fehlmann et  al.,  2023; van Eeden et  al.,  2018). 
Over the last couple of decades, technological advances have pro-
vided tremendous insights into animal ecology and behaviour (Kays 
et al., 2015; Nathan et al., 2022), often with direct implications for 
conservation (Tuia et al., 2022). The use of GPS-tracking technology, 
for instance, has contributed to a deeper understanding of animal 
movements and space use, which can inform the design and admin-
istration of protected areas (Hays et al., 2019). GPS tracking has also 
helped identify the locations of animal mortality (Sergio et al., 2019) 
and location-specific causes of mortality (Serratosa et  al.,  2024). 
Uncovering the location and spatial extent of animal threats is crit-
ical for managing endangered species (Kane et  al.,  2022; Olea & 
Mateo-Tomás,  2014) and for mitigating human-induced mortality 
(Serratosa et al., 2024).

While GPS tracking provides valuable insights into where and 
when animals use particular habitats, it does not provide direct in-
formation on the specific behaviours animals perform within those 
habitats. For instance, a site where an individual stops could be 
used for resting, foraging or other behaviours—which cannot be 
distinguished using GPS data alone. Complementing GPS-tracking 
data with additional sensors offers insights into the behaviour and 
energy use of elusive and cryptic animals (Shepard et  al.,  2008; 
Smith & Pinter-Wollman,  2021; Spiegel et  al.,  2015; Tuia 
et al., 2022; Williams et al., 2020). Tri-axial accelerometers (ACC) 
are widely used in behavioural research, among other sensors 
(Brown et al., 2013; Kays et al., 2015; Nathan et al., 2012). These 
devices measure acceleration in three orthogonal axes (sway—x; 

surge—y; and heave—z) that change according to the animal's pos-
ture and locomotion. These measurements can be recorded either 
continuously or in ‘bouts’ (i.e. sampling units) of a few seconds 
at varying resolution (i.e. frequency, in Hz) and intervals (for ex-
ample, recording for 5 s at 20 Hz, every 10 min). Different accel-
eration signatures enable the measurement of movement-related 
energy expenditure (Gleiss et  al.,  2011; Halsey et  al.,  2009) and 
can be used to distinguish among different behaviours (Shepard 
et  al.,  2008); for example, for estimating flight duration in small 
migratory passerines (Bäckman et al., 2017).

Machine learning algorithms are used to classify raw ac-
celeration bouts into different behavioural classes (Nathan 
et al., 2012; Resheff et al., 2014; Valletta et al., 2017; Wang, 2019; 
Yu et al., 2021). These algorithms can operate in an unsupervised 
manner, identifying similarities in acceleration data to produce 
unlabelled clusters of similar measurements that subsequently 
need to be manually classified into specific behaviours (Chimienti 
et al., 2016; Wang, 2019). Alternatively, supervised learning involves 
training an algorithm with a dataset in which each behaviour is la-
belled, allowing the algorithm to ‘learn’ the distinctive acceleration 
patterns of different behaviours (Nathan et al., 2012; Wang, 2019; 
Yu et al., 2021). However, depending on the level of detail required 
and on how distinctive the behaviours are, assembling a training 
dataset can be laborious, as it typically requires direct observa-
tions of animals in the wild or in captivity, synchronized with the 
ACC measurements (Campbell et al., 2013; Dickinson et al., 2021). 
Despite these difficulties, supervised machine learning algorithms 
have been successfully used to classify behaviours across diverse 
animal groups, including baboons (Fehlmann et  al.,  2023), large 
pelagic fish (Clarke et al., 2021), sea turtles (Jeantet et al., 2020), 
condors and other vultures (Rast et al., 2024; Spiegel et al., 2013; 
Williams et al., 2015). Commonly used algorithms include artificial 
neural networks, extreme gradient boosting and random forests 

importantly, feeding behaviours were accurately classified (0.87 precision, 0.92 
recall). We calculated an observation-specific confidence score and demonstrated 
its effectiveness in identifying true- and false-positive classifications, in both 
captive and free-roaming individuals. Finally, we used our model to reliably 
identify feeding hotspots, where vultures can be at higher risk of poisoning.

4.	 Synthesis and applications. We provide a tool to help identify vulture feeding 
hotspots, supporting carcass management efforts to prevent poisoning. 
Integrated with near real-time tracking, our model can support global efforts to 
combat scavenger poisoning. The training dataset, model and codes are provided 
in a user-friendly platform, along with a conceptual framework, to encourage use 
by ecologists and conservation practitioners.

K E Y W O R D S
accelerometer, behaviour classification, biotelemetry, conservation, griffon vulture, poisoning, 
random forest, supervised machine learning
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(Resheff et  al.,  2014; Yu et  al.,  2021). Random forests have the 
advantage of being able to model complex interactions between 
the often correlated predictor variables, therefore not requiring 
the pre-processing and filtering of variables (Cutler et al., 2007), 
and simplifying behavioural classification.

Once a machine learning model is trained, it can classify new, 
unseen accelerometer data into the trained behavioural classes, 
invariably resulting in some classification errors (Glass et al., 2020; 
Jeantet et  al.,  2020). Errors emerge from a few, non-mutually ex-
clusive processes. First, acceleration bouts, particularly long ones, 
may include transitions among behaviours, resulting in a mixture 
of different acceleration signatures (Resheff et  al.,  2024). Second, 
rare behaviours may be underrepresented or missing from the lim-
ited training dataset (e.g. seasonal and rare behaviours such as cop-
ulation). Third, the behavioural repertoire of some individuals may 
be broader than what the algorithm is trained for. Because some 
behaviours might be difficult to observe in captivity (e.g. flight be-
haviours, Williams et  al.,  2015), this last error is particularly rele-
vant for algorithms trained on captive individuals that are used to 
predict the behaviours of wild animals (Dickinson et al., 2021). Still, 
the models must choose the best fitting behavioural class among 
the available options, even if none provides a particularly good fit. 
These errors demand a mechanism to verify the accuracy of each be-
havioural classification, allowing the model to distinguish between 
true-positive and false-positive classifications (Bidder et  al.,  2014; 
Glass et  al.,  2020). While some studies offer guidance on how to 
best use and analyse large acceleration datasets (e.g. Leos-Barajas 
et al., 2017; Resheff et al., 2014; Williams et al., 2020), the complex-
ity of these tools remains a barrier for non-experts, hindering their 
use in conservation science and practice.

Here we develop an accelerometer-based behavioural classi-
fication tool and validate its real-world application in ecology and 
conservation, using griffon vultures (Gyps fulvus) as a case study. 
As obligate scavengers, vultures support key ecosystem func-
tions by consuming carcasses and recycling nutrients (Buechley & 
Şekercioğlu,  2016). Yet, around the world, 70% of vulture species 
are in danger of extinction, with poisoning driven by consuming car-
casses containing toxic substances being one of the leading causes 
for population declines (Ives et al., 2022; Ogada et al., 2012; Plaza 
et  al.,  2019). Poisoning can be either intentional or unintentional. 
For instance, poachers may lace carcasses with poison to prevent 
these raptors from alerting environmental authorities of poached 
wildlife (Mateo-Tomás & López-Bao, 2020; Ogada et al., 2016), and 
farmers may do so for combating pests and mammalian carnivores. 
Anti-inflammatory drugs used to treat cattle are also lethal to vul-
tures, leading to poisoning at these carcasses (López-Bao & Mateo-
Tomás, 2022; Ogada et al., 2012; Plaza et al., 2019). Several hundred 
vultures may quickly gather to eat at a single carcass, increasing their 
vulnerability to mass poisoning events (McNutt & Bradley,  2014). 
Other scavenger species also feed on carcasses (Olea et al., 2019), 
exposing them to similar risks of poisoning (Katzner et  al.,  2024; 
López-Bao & Mateo-Tomás,  2022). Early detection of carcasses 
might facilitate their proper management to, for example, prevent 

vultures and other wild species from feeding on carrion with toxic 
substances by removing these from the environment. Moreover, 
when poisoning events are promptly detected, vultures and other 
animals can undergo medical intervention (Acácio et  al.,  2023; 
Anglister et al., 2023). Considering the vulture's large roaming areas 
(Spiegel et al., 2015), tracking technology and behavioural classifica-
tion are essential tools to identify vultures' feeding events. Vultures 
can therefore act as sentinels, facilitating carcass detection and 
maximizing prompt intervention efforts to reduce detrimental ef-
fects associated with the consumption of contaminated carrion. For 
instance, by reducing the number of fatalities at a poisoning event to 
avoid long-term effects on species' populations (Acácio et al., 2023; 
Slabe et al., 2022).

In this study, our goals are to (1) develop an ACC-based be-
havioural classification algorithm, which, together with the training 
dataset and a conceptual framework of the methodological work-
flow, is made freely available to conservationists and ecologists; (2) 
validate the algorithm's classifications by comparing the confidence 
scores of true-positive and false-positive classifications, using both 
the training dataset and data from free-roaming vultures; and (3) 
apply our novel algorithm to real-life scenarios with important con-
servation implications—that is rapid carcass detection to prevent 
vulture poisoning. Ultimately, our goal is to combine technological 
advancements in GPS and accelerometry to improve wildlife con-
servation efforts and to develop a tool that is easily transferable to 
other systems.

2  |  MATERIAL S AND METHODS

2.1  |  Study system

The study took place in Israel, where griffon vultures are critically 
endangered (Mayrose et al., 2017). A historical population of thou-
sands of griffons is currently declining; three decades ago, there 
were only 400 griffons in this population, and fewer than 200 in-
dividuals remain today (Hatzofe,  2020). Pesticide poisoning from 
consuming laced carcasses is the leading cause of griffon mortal-
ity, accounting for 45% of documented deaths between 2010 and 
2021 in this region (Anglister et al., 2023). Lead poisoning and in-
gestion of animals treated with anti-inflammatory drugs each con-
tribute to 6% of mortality events, posing additional threats to this 
population (Anglister et al., 2023). To prevent the local extinction 
of this species, the Israel Nature and Parks Authority (INPA) runs 
an intricate management programme, including the provisioning of 
contaminant-free food at supplementary feeding stations (Spiegel 
et  al.,  2013, 2015), the release of captive-bred and translocated 
griffons (Efrat et al., 2020), and individually tracking vultures using 
GPS-Accelerometer transmitters, to identify poisoning events and 
other threats. When wild carcasses are detected in a random loca-
tion within areas of known pastoral activity and poisoning history, 
or when vultures exhibit minimal movement, suggesting they are 
unwell, rangers are sent to the field to remove the carcasses and/
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4  |    VAADIA et al.

or transport affected individuals to a wildlife hospital, underscoring 
the critical role of GPS-tracking data for the conservation of this 
population (Acácio et al., 2023).

Every year, approximately 100 free-roaming griffons are cap-
tured by the INPA using a cage trap, to identify the individuals 
with metal and colour rings and with patagial tags. In these trap-
ping events, a few individuals are fitted with a GPS-ACC transmitter 
(Ornitela OT-50) using a Teflon harness in a leg-loop configuration. 
The transmitters are equipped with solar panels that recharge the 
batteries and transmit the collected data via the GSM network, elim-
inating the need for recapturing individuals to retrieve information. 
The current study did not require additional ethical approval since it 
uses tracking data collected from these GPS-ACC tags and no cap-
tures of free-roaming vultures were conducted specifically for this 
study. The capture and tagging procedures were approved by the 
ethics committee of the Israel Nature and Parks Authority (permit 
number 42166).

2.2  |  Conducting observations to build an ACC 
training dataset

Between January 2020 and February 2022, we deployed GPS-ACC 
transmitters on 31 griffon vultures, 14 captive vultures, and 17 free-
roaming individuals. The captive vultures were housed in 4 breeding 
programmes, rehabilitation or wildlife facilities in Israel and in Spain: 
Ramat Hanadiv (Israel, n = 4), Hai-Bar Carmel (Israel, n = 4), Cabárceno 
Wildlife Park (Spain, n = 3) and GREFA wildlife hospital (Spain, n = 3). 
In each cage, there were 6 to 12 vultures. Additional behavioural 
data was collected in Israel for 17 free-roaming griffon vultures. One 
individual dropped his transmitter and was deployed with another 
device (thus there were 31 individuals but 32 transmitters). In Israel, 
the transmitters were deployed using a leg-loop harness, and in 
Spain, the loggers were deployed using a backpack harness.

The transmitters were programmed to collect GPS and ACC at 
independent schedules and differently for captive and free-roaming 
griffons. The transmitters of captive griffons were programmed to 
collect tri-axial accelerometer data at 20 Hz almost continuously 
(10-min-long periods, with a 1 s interval in between). These 10 min 
bouts were parsed into 5 s bouts to match the free-roaming data-
set. Bouts of 5 s at 20 Hz were recorded for free-roaming griffons 
every 10 min, depending on the transmitter's battery charge (see 
Supporting Information for details).

To classify each 5 s ACC bout as a particular behaviour, we 
conducted direct observations and video recordings of the tagged 
griffons, both in captivity and in the wild. In total, we performed ob-
servations for 79 days. Direct observations of captive and wild grif-
fons were conducted with a spotting scope (Swarovski ATX spotting 
scope 85 mm), ensuring a sufficient distance to not disturb the vul-
tures' natural behaviour. The video recordings were captured using 
a camera mounted on a wall support in Spain, and with nest cameras 
at the captive breeding facilities, or live streaming nest cameras at 
wild nests in Israel (BirdLife Israel, 2022). The direct observations of 

wild vultures were performed at roosting sites, at approximately 250 
of the individuals.

We recorded six ecologically important behavioural classes: 
‘Standing’—vulture is resting upright (could be roosting, and may 
include minor preening and changes in body posture); ‘Lying’—vul-
ture is lying parallel to the ground, either resting or incubating; 
‘Feeding’—vulture is either directly eating from a carcass or engaged 
in intense social interactions next to the carcass (e.g. fighting or pos-
turing towards other vultures before eating); ‘Ground’—includes all 
other active ground behaviours that are not directly related to feed-
ing or resting (e.g. walking, running, hopping, etc.); ‘Flapping’—ac-
tive flight with wingbeats; and ‘Soaring’—passive flight (e.g. thermal 
soaring, gliding, etc.). Because long flights do not occur in captivity, 
we used GPS-ACC data from 17 free-roaming griffons in southern 
Israel to classify ‘Soaring’ (passive) and ‘Flapping’ (active) flight be-
haviours. We identified segments of continuous flight using the GPS 
ground speed (ground speed >4 m/s) and plotted the acceleration 
measurements taken during these flights. The acceleration signa-
tures of soaring and passive flights are so distinctive (Figure  1b,c, 
Williams et al., 2015) that there was no need to ground-truth these 
behaviours with visual sightings (which would be challenging, con-
sidering their large roaming areas).

2.3  |  Pre-processing the ACC data and model 
training

Before deployment on the griffons, 50 transmitters were calibrated 
on a levelled surface, in all six possible perpendicular orientations. 
This calibration allowed us to obtain a transmitter-specific instrument 
error for translating raw acceleration data (in mV) into acceleration 
units (m/s2). For 14 transmitters (out of 32) without specific error 
values, we used the average error across the measured transmitters 
(n = 50). The calibration values used are publicly available on GitHub.

We identified the start and end of each accelerometer bout and 
excluded from the ACC behavioural dataset all bouts shorter than 
5 s, as well as all bouts that matched more than one behavioural class 
during the 5 s period. Each acceleration bout was summarized into 
47 statistical features commonly used in other studies using ma-
chine learning algorithms to perform behavioural classifications of 
ACC data (e.g. Nathan et  al.,  2012; Yu et  al.,  2021). For a full list 
of features, see Table S1. All analyses were performed in R (R Core 
Team, 2023).

Using the R packages ranger (Wright & Ziegler, 2017) and parsnip 
(Kuhn & Vaughan, 2024), we built a random forest model to classify 
behaviours using the annotated acceleration bouts. We started by 
splitting this dataset into ‘training’ (67%) and ‘testing’ (33%) subsets, 
an ad hoc measure commonly found in other machine learning ap-
plications (e.g. Jeantet et al., 2020). Using the ‘training subset’, we 
built a random forest model and we evaluated the performance of 
our model using the ‘testing’ subset. We built a confusion matrix and 
calculated three performance metrics for the full model and for each 
behaviour: (i) accuracy; (ii) precision; and (iii) recall. The equations 
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    |  5VAADIA et al.

and descriptions for each metric can be found in Table  1. For ex-
ample, a model may have 0.90 accuracy (i.e. 90% of all behaviours 
were predicted correctly), 0.85 precision for a specific behaviour 

(e.g. 85% of all ‘Feeding’ predictions were indeed ‘Feeding’ obser-
vations and 15% were a different behaviour and wrongly identified 
as ‘Feeding’), and 0.80 recall of a specific behaviour (e.g., 80% of 

F I G U R E  1  Examples of accelerometer-based classification of griffon vulture's behaviours. Acceleration measurements of bouts classified 
as: (a) ‘Ground’, (b) ‘Soaring’ flight, (c) ‘Flapping’ flight, (f) ‘Feeding’, (g) ‘Lying’ and (h) ‘Standing’. The acceleration data was collected at 
20 Hz during 5 s for three orthogonal axes (d): Sway—X (red), surge—Y (green), and heave—Z (blue). (e) GPS tracking of a griffon vulture over 
1 day. The colours of the GPS locations match the behaviours recorded on that location: ‘Ground’—red; ‘Soaring’—green; ‘Flapping’—violet; 
‘Feeding’—yellow; ‘Lying’—light blue; ‘Standing’—black. This illustrates the large daily movements of griffon vultures, emphasizing the 
logistical challenges associated with surveillance in the desert study area. Photo credit: Yacov Ben Bunan.
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6  |    VAADIA et al.

‘Feeding’ observations were correctly predicted as ‘Feeding’ and 
20% were wrongly classified as another behaviour).

After training and evaluating the performance of the algorithm 
with the split annotated dataset, we built the final random forest 
model using the full dataset for training, likely improving the perfor-
mance of the algorithm. This full algorithm was then used to classify 
unobserved accelerometer bouts to identify feeding in free-roaming 
vultures (see below).

More details of the model building sequence can be found in 
Data  S2, and a full description of the model building process can 
be found in Figure 2. All the training data and the code necessary 
to train and build the algorithm are publicly available on Zenodo 
(Acácio et  al.,  2025) and GitHub (www.​github.​com/​Orrsl​ab/​ACC_​
behav​ior_​class​ifica​tion). The repository includes a tutorial suitable 
for two types of users: those who may wish to apply our (already-
trained) model to their own data (e.g. researchers and conservation-
ists working on similar vulture/raptor species), and those wishing 
to use our pipeline for training and building their own model (e.g. 
researchers and conservationists working on other species, or with 
different sampling protocols). With these tutorials, our main goal is 
to bridge the gap between researchers and practitioners.

2.4  |  Calculating confidence scores to validate 
model predictions

Using the training dataset, we calculated a confidence score for 
each behavioural classification (i.e. for every bout). This confidence 
score is the level of consensus among the different decision trees 
within the random forest (i.e. the proportion of trees that agree on 
the highest scoring prediction). For example, if the model classifies a 
given bout as ‘Feeding’ with a confidence score of 0.7, then 70% of 
the trees agreed on that classification. To determine the validity of 
this score as an indicator of the behavioural classification's reliability, 
we compared the scores of correctly identified behaviours (true-
positives) and of incorrectly identified behaviours (false-positives) 
in the testing subset. We then used a generalized linear mixed 
model (GLMM) with an ordered beta distribution and a logit link to 
compare scores of the two groups. The confidence score (range 0 
to 1) was the response variable, and the explanatory variables were 
the Boolean correctness of the model prediction (categorical; true-
positive or false-positive), the predicted behaviour (categorical) 

and their interaction. The model included device ID as a random 
intercept. The GLMM was built using glmmTMB R package (Brooks 
et al., 2017), and the fit of the model and residuals were evaluated 
using DHARMa R package (Hartig, 2022).

To understand the effect of the harness configuration (backpack 
or leg-loop) on the confidence scores, we compared the confidence 
scores of true-positive and false-positive classifications of be-
haviours recorded with the two different harnesses. We performed 
this comparison for the two behaviours with the most observations: 
standing and feeding. We built two separate GLMMs for each be-
haviour. Each GLMM included the confidence score as a response 
variable, and the Boolean correctness of the model prediction 
(true-positive or false-positive), the predicted behaviour, and their 
interaction as explanatory variables. We also included device ID as a 
random intercept. To further explore the influence of harness type 
on the behavioural classification, we trained a new random forest 
model using only the leg-loop data (n = 3428) and tested it on the 
backpack dataset (n = 714). This model was trained on a subset of 
bouts that included only the three behavioural categories present in 
both datasets (‘Standing’, ‘Ground’ and ‘Feeding’).

2.5  |  Using the confidence score to validate 
‘Feeding’ predictions of free-roaming vultures

To assess the reliability of our algorithms at classifying unobserved 
data, we validated predicted ‘Feeding’ behaviours of free-roaming 
vultures. We focused on this behaviour due to its importance for 
identifying poisoning events, the main cause of vulture mortality in 
our study area (Anglister et al., 2023). This validation is important 
because even a highly accurate model introduces classification 
errors. For example, considering a transmitter collecting 72 bouts 
a day, with 10 of those classified as ‘Feeding’, and a model with 
90% precision for ‘Feeding’. Over the course of 1 week, the device 
would collect 504 bouts, 70 of which were classified as ‘Feeding’. 
Considering the model's precision, 7 of these ‘Feeding’ classifications 
would be false-positives which, extrapolating for a population of 
50 vultures, would correspond to approximately 350 false-positive 
feeding predictions per week.

We combined information about the location of supplemen-
tary feeding stations, satellite imagery, and GPS positions from 
griffon-borne transmitters to assess the likelihood that the unob-
served vultures' ACC-predicted ‘Feeding’ behaviour represents a 
true feeding event. Between November and December 2020, we 
collected GPS and accelerometer data from 7 tagged free-roaming 
griffons in southern Israel (transmitter schedule described in the 
Supporting Information). These individuals were selected be-
cause they provided consistent high-resolution data throughout 
this two-month period, making them suitable for the fine-scale 
analysis of feeding behaviour. We matched a GPS position to an 
accelerometer bout if they were recorded within 5 min of each 
other. We designated four situations with decreasing probability 
of representing real feeding events based on the GPS location 

TA B L E  1  Performance metrics used to evaluate the random 
forest model performance, considering the true-positive (TP), 
true-negative (TN), false-positive (FP) and false-negative (FN) 
predictions.

Performance metric Equation

Accuracy TP+ TN

TP+ TN+ FP+ FN

Precision TP

TP+ FP

Recall TP

TP+ FN
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    |  7VAADIA et al.

F I G U R E  2  Methodological workflow outlining the process of identifying behaviours of wild animals based on accelerometer data. All the 
training data, code and tutorials necessary to follow this workflow are available on GitHub (www.​github.​com/​Orrsl​ab/​ACC_​behav​ior_​class​
ifica​tion) and at (Acácio et al., 2025).
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and GPS ground speed: ‘Station’—if the ACC identified a feeding 
event within 250 m from a supplementary feeding station, it likely 
represents a true feeding event (likely true-positive predictions); 
‘Open area’—if the ACC identified a feeding event at a GPS posi-
tion that is at an open landscape (but not on a cliff), where natu-
rally occurring food is sometimes available (wildlife or livestock 
carcasses), it may represent a true feeding event; ‘Cliff’—if the 
ACC identified a feeding event on cliff faces, where food is largely 
absent but where vultures spend a large proportion of their time 
roosting, it is not likely to be a true feeding event; ‘Flight’—if the 
GPS ground speed was >4 m/s, the vulture was probably flying, 
and therefore, it is likely a false feeding event. The 250 m radius 
around the feeding station accounted for the vultures' behaviour 
of standing nearby and overlooking the station before feeding. 
Given the potential 5-min offset between GPS fixes and acceler-
ometer bouts, this buffer allows for the possibility that a griffon 
could move to the station and begin feeding within that time win-
dow. All points were mapped on satellite images of the study area 
and were visually examined after this classification to confirm the 
assignment to each situation (for example, to confirm vulture pres-
ence on a cliff, in an open area, or near a feeding station).

To determine if the confidence score of the classification can be 
used to identify false-positives in free-roaming griffons, we com-
pared the algorithm's confidence scores of ‘Feeding’ predictions 
at ‘Stations’ (i.e. high probability of true-positives) with ‘Feeding’ 
predictions at ‘Cliffs’ or during ‘Flight’ (i.e. high probability of false-
positives). We omitted the ‘Open area’ situation since it could rep-
resent a mixture of feeding and non-feeding behaviours and was 
therefore less conclusive for this comparison. We used a GLMM, 
with a beta distribution and a logit link, in which the response vari-
able was the algorithm's confidence score, and the explanatory vari-
able was the classification accuracy according to the GPS location 
(likely true-positive or likely false-positive). We included device ID 
as a random intercept.

2.6  |  Case study: Identification of vulture feeding 
hotspots to prevent poisoning

To demonstrate the applicability of the ACC algorithm to a real-
world conservation problem, we used it to identify griffons' feeding 
hotspots outside supplementary feeding stations (i.e. places where 
safe carcasses are provided to vultures). Considering the high risk 
of carcasses outside feeding stations being contaminated with 
toxic substances for vultures (e.g. pesticides or NSAIDs, Anglister 
et  al.,  2023), their rapid detection and removal from the field is 
a priority for wildlife authorities in Israel (Acácio et  al.,  2023). 
Accordingly, mapping those areas where vultures are feeding on 
potentially contaminated carcasses may guide management actions.

In November 2022, we collected 1 month of GPS and acceler-
ometer data for 51 free-roaming griffons in Southern Israel, aiming 
to identify the locations of feeding events that occurred outside 

supplementary feeding stations (events that present a higher risk of 
poisoning). After applying the random forest algorithm to this data-
set, we matched the accelerometer ‘Feeding’ bouts with a GPS loca-
tion using three criteria. First, if they were collected within 5 min of 
each other, and if the GPS ground speed was below 4 m/s (indicating 
the bird was not flying). Second, if no GPS position matched these 
criteria, we matched ACC bouts with GPS locations if they were 
collected within 11 min of each other (while maintaining the ground 
speed criteria) to account for a possible delay in the time to acquire 
a position by the GPS. If no GPS position matched these criteria, 
the ‘Feeding’ bout was discarded from further analysis because we 
could not infer where the feeding event took place.

Using the results of the previous analyses, where we assessed 
if the confidence score could be used to minimize the number of 
false-positives, we excluded bouts with confidence scores below 
0.5. This conservative threshold was chosen to avoid eliminating 
true-positives, as failing to detect feeding areas posed a greater 
risk for griffon conservation than including false-positive obser-
vations. However, this threshold is system- and data-specific and 
is expected to be different for other species and systems. We also 
excluded ‘Feeding’ bouts that occurred within supplementary feed-
ing stations, at known roost sites (the latter likely representing false 
positives), and outside the study area (southern Israel and Jordan). 
With the remaining locations (n = 264), we created a 2D kernel (grid 
size = 1000, bandwidth = bandwidth.nrd function from MASS R 
package, Venables & Ripley, 2002), portraying the density of loca-
tions, using bkde2D function of KernSmooth R package (Wand, 2024). 
On this density map, we overlayed the information of known car-
casses independently identified in the field, outside feeding stations, 
during this same time period (n = 5). The carcasses were located by 
local rangers, either through reports from farmers, chance encoun-
ters during field patrols, or via an alert system that flags unusual 
landings of tracked raptors based on GPS data. This system uses 
location data from several species to identify potential poisoning 
events, independent of accelerometer-based behavioural classifica-
tions used in this study.

Finally, to assess if the behavioural classification impacted the 
designation of feeding hotspots compared to a mapping based on 
GPS metrics alone, we built an additional density map using all GPS 
locations from the same dataset, without filtering for ‘feeding-only’ 
locations. We excluded locations that occurred within supplemen-
tary feeding stations, at known roost sites, or where the ground 
speed exceeded 4 m/s.

3  |  RESULTS

3.1  |  Behavioural classification

We collected 5783 behavioural observations for 14 captive and 17 
free-roaming griffon vultures (a total of 31 individuals) during 57 days 
(18 days for captive individuals and 39 for free-roaming individuals). 
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    |  9VAADIA et al.

The most common behaviour was ‘Standing’ (3488 observations), 
and the least common behaviour was ‘Ground’ (67 observations, 
Table S2). When training the random forest model with 67% of the 
observed (i.e. ground-truthed) dataset, we achieve an overall accu-
racy of 0.96, precision of 0.89, and recall of 0.82. Specifically, the 
model predicted ‘Feeding’ behaviours with precision of 0.87 and re-
call of 0.92 (Figure 3; Table S2). ‘Ground’, on the other hand, had the 
poorest predictions (precision = 0.57, recall = 0.15). The indirectly 
inferred behaviours ‘Soaring’ and ‘Flapping’ were well predicted by 
our model (‘Soaring’: precision = 0.99, recall = 0.99; ‘Flapping’: preci-
sion = 0.98, recall = 0.95).

3.2  |  Performance of the confidence score in 
validating model predictions

Overall, the confidence scores of correctly identified behaviours 
(true-positives) were significantly higher than the scores of inac-
curately identified behaviours (false-positives; GLMM: model es-
timate ± SE = 0.876 ± 0.195, p-value < 0.001, Figure  4; Table  S3). 
‘Ground’ behaviours, which had the lowest number of observations 
(n = 67), were the exception, with significantly higher confidence 
scores of false-positives compared to true-positives (Figure  4). 

F I G U R E  3  Confusion matrix of the random forest model to classify vulture behaviour based on accelerometer data. Rows represent the 
behaviour predicted by the algorithm we developed, and columns represent the behaviours we observed directly. The colours in the diagonal 
show the precision for each behaviour, with darker colours indicating higher precision. The size of the text outside the diagonal indicates the 
proportion of false-positives in each behavioural category, with larger numbers indicating a larger proportion of false-positives. For example, 
more ‘Feeding’ bouts were wrongly classified as ‘Standing’ than as ‘Ground’, and none of the ‘Feeding’ bouts were wrongly classified as 
‘Soaring’, ‘Flapping’ or ‘Lying’.
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10  |    VAADIA et al.

‘Ground’ true-positive behaviours also had the lowest confidence 
scores (mean confidence score ± SD = 0.41 ± 0.03). ‘Soaring’, ‘Lying’, 
‘Standing’, and ‘Flapping’ were the behaviours with the high-
est true-positive confidence scores (mean confidence score ± SD; 
‘Soaring’ = 0.99 ± 0.08, ‘Lying’ = 0.98 ± 0.06, ‘Standing’ = 0.98 ± 0.08, 
‘Flapping’ = 0.93 ± 0.12). ‘Feeding’ had on average a high con-
fidence score but also a large variation (mean confidence 
score ± SD = 0.82 ± 0.15, Figure 4; Tables S2 and S3).

There were no significant differences between the confi-
dence scores of behaviours recorded with backpack or leg-loop 
harnesses for the two tested behaviours: ‘Standing’ (GLMM: esti-
mate ± SE = 0.374 ± 0.283, p-value = 0.283) and ‘Feeding’ (GLMM: 
estimate ± SE = −0.725 ± 0.798, p-value = 0.364, Figure S1; Table S4). 
The model trained on leg-loop data and tested on backpack data 
had high overall accuracy (accuracy = 0.86) and performed well at 
classifying ‘Standing’ behaviours (‘Standing’ precision = 0.99; re-
call = 0.91). All true ‘Feeding’ behaviours were correctly identified 
as such (‘Feeding’ recall = 1). However, most ‘Ground’ behaviours 
were misclassified as ‘Feeding’, which reduced the precision of the 
‘Feeding’ category (‘Feeding’ precision = 0.52). Similarly to the full 
model, ‘Ground’ behaviours had the poorest performance (Table S5).

3.3  |  Confidence score to validate ‘feeding’ 
predictions of free-roaming vultures

We used the GPS locations to validate 175 ‘Feeding’ bouts from 
7 free-roaming vultures in Southern Israel. Overall, 126 ‘Feeding’ 
bouts (72%) occurred within a supplementary feeding station 
(‘Station’—likely true-positives), 22 bouts (13%) were located on 
‘Open areas’ (likely a mix of true- and false-positives), 20 bouts 
(11%) were on ‘Cliffs’ (likely false-positives), and 7 bouts (4%) 
were in ‘Flight’ (likely false-positives, Figure 5). The relatively high 

proportion of feeding bouts identified on cliffs likely reflects the 
considerable amount of time griffons spend in these areas. Overall, 
of all ‘Feeding’ bouts identified by the algorithm, 72%–85% (all 
‘Station’ bouts + at least part of the ‘Open area’ bouts) were likely 
real feeding events. Furthermore, after removing ‘Cliff’ and ‘Flight’ 
bouts (easily identifiable using only the GPS location, satellite im-
agery, and ground speed), 85%–100% of the ‘Feeding’ predictions 
(all ‘Station’ bouts + at least part of the ‘Open area’ bouts) were 
indeed likely feeding events.

Importantly, the confidence scores of ‘Feeding’ bouts likely to 
be true-positives were higher (mean ± SD: ‘Station’ = 0.75 ± 0.16) 
than the scores of bouts likely to be false-positives (‘Cliff’ and 
‘Flight’ = 0.56 ± 0.19). This comparison was statistically significant 
(GLMM: estimate ± SE = −0.805 ± 0.167, p-value < 0.001, Table  S5). 
When considering solely the ‘Feeding’ bouts with a confidence score 
over 0.5, 114 bouts (88.4%) occurred within a supplementary feed-
ing station and were likely true-positives. This threshold maximizes 
the number of true-positive predictions, while minimizing the num-
ber of false-positives (Figure 5).

3.4  |  Mapping vulture's feeding hotspots to 
facilitate poisoning identification

In November 2022, we collected 4595 ‘Feeding’ bouts of 51 grif-
fon vultures in our study area. After sequentially removing the 
bouts without a GPS location (n = 586), bouts inside feeding stations 
(n = 2534), outside Southern Israel and Jordan (n = 157), bouts lo-
cated in known roosts (n = 979), and bouts with a confidence score 
below 0.5 (n = 60, Figure 5), we retained 264 bouts of 31 vultures 
that allowed us to map their feeding hotspots.

We built a KDE with the remaining 264 ‘Feeding’ bouts and 
detected a hotspot of feeding events in the Judean Desert. This 

F I G U R E  5  Validation of ‘Feeding’ behaviours using data from free-roaming griffons. (a) Percentage of ‘Feeding’ predictions (n = 175) 
located within a supplementary feeding station (‘Station’—blue), on open landscape (‘Open area’—green), on cliffs (‘Cliffs’—dark brown) or in 
flight (‘Flight’—light brown). (b) Distribution of the confidence scores of ‘Feeding’ bouts likely to be true-positives (located within a feeding 
station, in blue) and likely to be false-positives (located on cliffs or in flight, in dark red). The dashed line indicates the confidence threshold 
of 0.5, a conservative threshold that reduces the number of false-positives, while including nearly all true-positive predictions.
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    |  11VAADIA et al.

hotspot is consistent with the INPA ranger's reports for this same 
period, where 4 out of 5 reported carcasses outside feeding sta-
tions were within the KDE (Figure  6). This density map differed 
substantially from the one based solely on GPS-derived metrics 
(Figure S2), containing 1938 potential feeding locations. Notably, 

the GPS-only KDE failed to identify a key feeding hotspot in 
Jordan. This confirms that the algorithm can be used to identify 
areas with a high probability of vultures' feeding on potentially 
contaminated carcasses and highlights the added value of the be-
havioural classification.

F I G U R E  6  Acceleration-based behavioural classification as a tool to identify griffon vultures' feeding hotspots outside supplementary 
feeding stations. The red points show the vulture feeding locations in Southern Israel and Jordan over November 2022, identified using 
the random forest algorithm. The blue markers indicate the location of ground-truthed carcasses outside feeding stations; the darker blue 
indicates two carcasses in approximately the same location. The polygons indicate the density of vulture feeding locations, showing the 
areas where vultures are at greater risk of poisoning. The polygon colours indicate the density of vulture feeding locations, with blue areas 
having lower density and red areas higher density. The inset shows the location of the study area in the world.

Ground-truthed carcasses

Vulture feeding location 
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12  |    VAADIA et al.

4  |  DISCUSSION

Recent advancements in tracking technology and analytical tools 
are enhancing our understanding of animal ecology and behaviour 
and improving its applications for biodiversity conservation (Tuia 
et al., 2022; Williams et al., 2020). In this study, we add to this body 
of literature by developing a machine learning algorithm to classify 
griffon vultures' behaviours, thoroughly validating the behavioural 
classifications, and using them to inform conservation efforts, 
namely carcass detection to prevent poisoning. Our model accurately 
predicted griffons' behaviours, allowing for the identification of 
potential feeding events outside feeding stations and the mapping of 
feeding hotspots where vultures and other scavengers can engage 
in risky behaviours such as the consumption of poisoned carcasses 
(Peters et  al.,  2023). These maps may become fundamental tools 
for monitoring prioritization and for optimizing on-the-ground 
actions for the conservation of vultures and other scavengers (e.g. 
the detection of poisoning events, Rast et al., 2024). Another major 
contribution of this study is the use and validation of the algorithm's 
confidence in each behavioural classification, showing the utility 
of this approach for other behaviours and contexts. Assessing the 
degree of confidence in this manner is rarely done in ecological 
studies (Bidder et  al.,  2014), but we highlight how this approach 
may minimize misclassifications (e.g., false-positives) especially 
when resources for ground truthing are limited. Our algorithm 
and training dataset are made accessible to other researchers and 
conservationists studying vultures and similar species. Moreover, 
they can be easily adapted to classify the behaviours of other species 
in diverse study systems. Importantly, to further promote this 
usability, we provide a methodological workflow to guide potential 
users in the process of identifying behaviours of wild animals based 
on accelerometer data.

4.1  |  Accelerometer-based behavioural 
classification as a tool for vulture conservation

With our behavioural classification model, we were able to identify 
vulture feeding hotspots in Southern Israel. Indeed, the areas where 
our tracked vultures displayed ‘Feeding’ behaviours matched the 
locations of known ‘wild’ carcasses (i.e. outside feeding stations) 
during this same period. This case study used only a single month's 
worth of high-resolution data embedded within a long-term lower 
resolution tracking effort (Acácio et al., 2024; Spiegel et al., 2013), 
but it exemplifies how GPS and accelerometer data can be used 
to direct conservation efforts. The use of GPS tracking has been 
instrumental for vulture conservation in Israel (Spiegel et al., 2013), 
particularly for the detection of poisoning events (Acácio et al., 2023; 
Anglister et al., 2023). The local government environmental agency, 
INPA, developed a near-real-time alert system that warns rangers 
whenever a vulture lands at a suspicious area and when vultures 
are either moving very little or are suspected to be dead (Nemtzov 
et  al.,  2021). Rangers then actively respond to these alerts by 

inspecting the area and removing the carcasses; therefore, reducing 
the number of false alarms is important—both to reduce costs and 
workload, as well as avoiding erosion of rangers' responsiveness.

A similar near real-time alert system, using GPS data, has also been 
used for the monitoring of African elephants (Loxodonta Africana, 
Wall et al., 2014) and to track California condors (Gymnogyps cali-
fornianus) in the vicinity of wind farms (Sheppard et al., 2015). It has 
also been suggested as an anti-poaching tool to prevent the extinc-
tion of large mammals (O'Donoghue & Rutz, 2016). We propose that 
all these systems could be improved by using accelerometer data 
to remotely identify animal behaviour and risky events sooner and 
more reliably. Indeed, our results show that relying solely on GPS-
derived filters to identify potential feeding hotspots failed to iden-
tify a key feeding hotspot in Jordan and produced over seven times 
more data points, many of which were likely false-positives. Such an 
overload of low-quality alerts could lead to reduced responsiveness 
by the rangers, ultimately undermining conservation efforts on the 
ground.

Combining maps of feeding hotspots (either fixed or season-
specific ones) with similar near real-time alert systems may be crucial 
for vulture management and conservation. For example, the feeding 
areas that griffons use systematically throughout the year should be 
prioritized in terms of surveillance and sanitation efforts to prevent 
vultures (and other scavengers) from accessing carcasses contami-
nated with toxic substances. Additional management actions could 
be implemented, such as establishing new supplementary feeding 
stations in these areas or increasing carcass supply at existing sta-
tions, either all year-round or during particular seasons, to match 
potential seasonal changes in vultures' activity areas. Additionally, 
the hotspots could be used to implement geofences where data 
collection and transmissions would be at higher frequency. This in-
creased resolution may be critical in poisoning events, where the 
actual feeding may be quite fast (sometimes consuming a carcass 
within minutes) and vultures may perish quickly, depending on the 
type and amount of toxic substance ingested. Then, information re-
garding the griffon's location and behaviour is obtained and commu-
nicated faster: when a griffon lands in these areas and only if it feeds 
there (as indicated by the ACC classification), an alert should be sent 
to the rangers for immediate carcass inspection. While the system 
should also trigger alerts for any feeding events detected outside 
feeding stations (to allow for carcass inspection and potential re-
moval to reduce the risk of poisoning), identifying risky hotspots can 
help optimize resource allocation and prioritize conservation actions 
in high-risk areas.

Around the world, an increasing number of individuals of mul-
tiple vulture species are being tracked with GPS-Accelerometer 
devices, showing that they roam exceptionally large areas in their 
daily movements (Kane et al., 2022; Spiegel et al., 2015). Considering 
that about 70% of vulture species are endangered (Ives et al., 2022; 
Ogada et  al.,  2012; Plaza et  al.,  2019), surveillance systems that 
combine GPS tracking with accelerometry may be a useful tools to 
improve management actions in their large roaming areas to com-
bat major threats such as poisoning. For instance, such ACC-based 
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systems will enhance existing applications of GPS-tagged vultures 
to inform on-ground actions against illegal wildlife persecution (Rast 
et al., 2024; Rodríguez-Pérez et al., 2025) or to improve regulations 
for carrion disposal to feed vultures and other wild species (Mateo-
Tomás et al., 2023). Future studies could apply our methodology to 
publicly available GPS-ACC datasets to identify high-risk areas for 
vultures and guide targeted conservation interventions at a larger 
geographic scale.

Our thoroughly validated training dataset can also be used to 
classify the behaviour of griffons in other populations, as well as 
other old and new-world vulture species, particularly in Africa and 
Asia, where vulture populations continue to decrease. For exam-
ple, our algorithm and training dataset could be used to predict 
the behaviours of endangered Gyps species in Africa and Asia (e.g. 
Gyps africanus, Gyps coprotheres, Gyps bengalensis, among others), 
or even other vulture species (e.g. Torgos and Trigonoceps spe-
cies), considering their morphological and behavioural similarities 
with the griffon vulture. The use of surrogate species to identify 
accelerometer-based behaviours has been examined in other sys-
tems, with a variety of results. For example, the behaviours of do-
mestic dogs were good predictors of the behaviours of dingoes 
and cheetahs (Campbell et al., 2013), but the behaviour of domes-
tic caprids did not predict well the behaviour of their wild counter-
parts (Dickinson et al., 2021). Therefore, we recommend caution 
when using our trained model to classify the behaviour of other 
vulture species. In addition, our algorithm and modelling pipeline 
can be easily adapted for other, not related, animal species, as long 
as researchers provide their own training dataset for their study 
species.

4.2  |  Validating the accuracy of predictions of 
unobserved behaviours

Tri-axial accelerometers and classification algorithms have 
increasingly been used to obtain fine-scale behaviour of wild animals 
(Nathan et al., 2012; Resheff et al., 2014; Wang, 2019; Yu et al., 2021). 
However, after training and testing the model on a validated dataset, 
the model must classify unobserved and, sometimes, unknown 
behaviours. In this case, the model then matches the unknown 
behaviour with the best fitting known acceleration signature, 
resulting in misclassifications (Glass et  al.,  2020). Most ecological 
studies fail to acknowledge this limitation and do not provide a metric 
of how likely a particular classification is to be true (Glass et al., 2020). 
Here we tackle this methodological gap and calculate a confidence 
score, which allows us to distinguish between true-positive and 
false-positive classifications. Our approach is computationally 
simple to implement and does not require running more complex 
classification models. In addition to the confidence scores, we used 
biologically relevant information to validate observations classified 
as ‘Feeding’. For this subset of data, 15% of the observations were 
likely misclassifications because they occurred on cliffs (where there 
is no food in our case) or in flight. Filtering out observations based 

on easily accessible metrics (here, the topography, knowledge of the 
behaviour of the species, spatial position and GPS ground speed), as 
well as any observations with a confidence score below a relevant 
threshold, increases the accuracy of behavioural classifications.

Selecting filtering thresholds is always a balance between two 
types of errors. Here, we considered a conservative threshold of 0.5 
to distinguish true-positive and false-positive ‘Feeding’ predictions 
of free-roaming griffons, at the risk of including some false-positive 
predictions in our dataset (Type I error). However, in this case, the 
risk of not including part of the true-positive predictions (Type II 
error) is higher than including some false-positives; not including all 
true-positives could mean that some feeding hotspots would not be 
identified, potentially compromising sanitary management and over-
looking potential feeding and poisoning events. We encourage other 
researchers to use a similar approach whenever possible, combining 
confidence scores with ground-truthing information, to improve the 
accuracy of their conclusions.

In addition, we note that different behaviours, or even the same 
behaviour in different species or with different accelerometer de-
vices, may have different confidence score distributions. For exam-
ple, with our dataset, a threshold of 0.9 could have been suitable for 
distinguishing flapping and soaring flight behaviours, to study, for in-
stance, flight biomechanics. Therefore, the threshold of confidence 
should consider the underlying distribution of confidence scores for 
the behaviours in mind and should be defined according to this and 
the study objectives, balancing the risks of data loss with the costs 
of including false-positives in the dataset.

Finally, quantifying temporal correlations between behaviours 
could also help improve model performance or assist in post-
processing filtering of the classifications (Data  S3; Figure  S3). For 
instance, it is possible to combine a correlation matrix of the be-
haviours with the confidence scores. In our dataset, ‘Feeding’ is 
often followed by other ‘Feeding’ behaviours (Figure S3c). Thus, if a 
high-confidence ‘Feeding’ behaviour is followed by a low-confidence 
‘Feeding’ prediction, the strong positive dependency between these 
two behaviours could support treating the second ‘Feeding’ as a 
likely true-positive. Future studies could also implement more com-
plex models that allow for the incorporation of the correlation matrix 
within the model.

4.2.1  |  Challenges and considerations of 
accelerometer-based behavioural classification

Different tag placement and different attachment methods can 
greatly influence accelerometer signatures and consequently the 
behavioural classifications (Garde et al., 2022). Nevertheless, our re-
sults show that our algorithm is reliable for more than one attachment 
method, further increasing its usefulness. These non-significant dif-
ferences may result from the similarity in logger placement between 
the two attachment types (about 3 cm difference), as well as from 
the limited spinal flexibility of griffon vultures. Still, the large con-
fidence intervals in this comparison (due to the small sample size 
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for backpack harnesses), as well as the difficulty of our algorithm in 
classifying ‘Ground’ behaviours recorded with a backpack harness, 
show that this topic deserves further investigation with larger sam-
ple sizes and with other species.

After building the random forest, it is crucial to validate its accu-
racy, precision, and recall. In our study, the overall model was highly 
accurate, yet behaviours differed in their precisions. As expected, 
‘Ground’ was consistently the behaviour with the poorest predic-
tions across all our validations. This behavioural category included 
several, quite distinct, ground behaviours (like walking, running, 
hopping, etc.), in an attempt to account for all possible behaviours 
a griffon may display and to minimize misclassifications at the cost 
of losing accuracy (Glass et al., 2020). ‘Feeding’, on the other hand, 
was accurately classified by our model; however, despite a relatively 
large number of bouts in the training dataset (n = 587), the confi-
dence scores of this behaviour had large variance. A possible rea-
soning is that the griffon's feeding behaviour is highly complex and 
may include rapid shifts between fighting, posturing (spreading the 
wings), as well as eating per se (Bosè & Sarrazin, 2007)—all insepa-
rable within a 5 s timeframe. Including so many different postures in 
a single behavioural category results in high variation of confidence 
scores.

In addition, the number of conspecifics within a feeding event 
may further influence the behaviours that individuals display while 
foraging (Bosè et  al.,  2012), increasing within-individual variability 
for both wild and captive vultures. To mitigate the effect of within-
individual variability in our training dataset, we ensured that multiple 
captive individuals were feeding at the same carcass to replicate the 
wild feeding conditions. Finally, it is likely that individuals differ in 
their behaviour while foraging (e.g. dominant vs. subordinates, Bosè 
et al., 2012; Bosè & Sarrazin, 2007), emphasizing the need to improve 
behavioural classification models and account for individual differ-
ences in behaviour (Kirchner et al., 2023). In general, we suggest that 
future models can improve accuracy and precision by further split-
ting our six classes into subclasses that reflect more homogenous 
elementary behaviours (e.g. pecking, tearing meat apart, fighting). 
Merging ‘Ground’ and ‘Feeding’ categories could also potentially im-
prove the model's accuracy; however, since these two behaviours 
are not necessarily linked, this would come at the cost of decreased 
resolution in detecting true feeding events, compromising manage-
ment and conservation applications. For specific applications fo-
cused solely on identifying feeding activity, an alternative approach 
could involve merging all feeding and all non-feeding behaviours in 
a binary classification. This could simplify the interpretation, and we 
suggest that this option is worth exploring in a future study.

Despite the potential of accelerometer-based behavioural classi-
fication, collecting such large volumes of data can be costly, both in 
terms of data transmission and storage, as well as in terms of device 
memory and battery (Hounslow et al., 2019). Short sampling inter-
vals (2–3 s) at high resolution may reduce the probability of having 
multiple behaviours within a single bout, but may drain batteries 
faster, which can result in incomplete sampling designs and lower 
the device's lifespan. Integrating low-frequency accelerometry with 

additional sensors (e.g. time-depth recorders for marine species, 
Jeantet et al., 2020), may still effectively allow the study of animal 
behaviour without significantly increasing costs or reducing device 
longevity (Hounslow et al., 2019). In addition, analysing such large 
volumes of data can also be challenging, so we emphasize the need 
for collaboration in between fields of knowledge, with ecologists 
and data scientists working together for the conservation of biodi-
versity (Tuia et al., 2022). Lastly, as human activities are increasingly 
impacting the planet and driving species towards extinction, it is 
critical to harness technological advances for effective conservation 
and to safeguard the future of our planet's species and ecosystems.

5  |  CONCLUSIONS

In this study, we showed the potential of accelerometer-based 
behavioural classification to improve the management and 
conservation of endangered scavengers. By reliably identifying 
feeding behaviours and mapping feeding hotspots, our approach 
can help the detection of poisoning events earlier and optimize 
management resources to high-risk areas. We further show that 
combining the algorithm's confidence score with simple GPS-derived 
filters can greatly improve the reliability of the identification of 
feeding hotspots. Finally, our workflow, training dataset, and model 
are provided in an open-access platform to facilitate the adoption 
of this framework in the global management and conservation of 
endangered scavengers.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Data S1. Transmitter schedule of free-roaming griffon vultures.
Data S2. Details of the model building sequence.
Figure S1. Comparison of the confidence scores of true-positive 
(TP) and false-positive (FP) ‘Standing’ and ‘Feeding’ classifications, 
recorded with a backpack (red) and with a leg-loop (blue) harness.
Figure S2. Using GPS-derived metrics to identify feeding hotspots, 
without using acceleration-based behavioral classification.
Table  S1. Full list of statistical features used to summarize each 
acceleration bout.
Table  S2. Results of the random forest model to classify vulture 
behavior based on accelerometer data.
Table S3. Comparison of the confidence scores of true-positive and 
false-positive behavioral classifications.
Table S4. Comparison of the confidence scores of true-positive and 
false-positive ‘Standing’ and ‘Feeding’ classifications, recorded with 
a backpack and with a leg-loop harness.

Table  S5. Confusion matrix of the random forest assessing the 
influence of the harness type on the performance of the algorithm.
Table  S6. Comparison of the confidence scores of feeding bouts 
likely to be true-positives or false-positives.
Data S3. Temporal correlation between behaviors.
Figure S3. Temporal correlation between consecutive behaviors.
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