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Abstract
1. Human activities are endangering animal species globally, and implementing ef-
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learning algorithms are allowing the in situ study of animal movement and behav-
iour remotely. However, the challenge of building supervised machine learning
algorithms and collecting the large datasets required to train them is hampering
the widespread use of these tools. Additionally, the reliability of these models in
classifying unobserved behaviours is rarely validated, resulting in possible clas-

sification errors.

. We built a supervised accelerometer-based behavioural classification model for

griffon vultures (Gyps fulvus). Similarly to most other avian scavenger populations
worldwide, griffons are critically endangered in Israel and neighbouring countries,
mostly due to feeding on poisoned carcasses. Thus, identifying this scavenger's

feeding behaviour and foraging areas is crucial for their conservation.

. We trained a Random Forest model on acceleration data of 14 captive and 17

free-roaming griffons. We classified 5783 behavioural observations into 6 classes:
feeding, lying, standing, other ground behaviours, flapping and soaring flight.
The model performed well (0.96 accuracy, 0.89 precision and 0.82 recall) and,
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1 | INTRODUCTION

Anthropogenic activities are endangering animals around the world
(Venter et al., 2016). To combat the current wave of species ex-
tinction, we need to understand animal behaviour and ecology to
minimize threats and conflicts, and to implement effective conser-
vation strategies (Fehlmann et al., 2023; van Eeden et al., 2018).
Over the last couple of decades, technological advances have pro-
vided tremendous insights into animal ecology and behaviour (Kays
et al., 2015; Nathan et al., 2022), often with direct implications for
conservation (Tuia et al., 2022). The use of GPS-tracking technology,
for instance, has contributed to a deeper understanding of animal
movements and space use, which can inform the design and admin-
istration of protected areas (Hays et al., 2019). GPS tracking has also
helped identify the locations of animal mortality (Sergio et al., 2019)
and location-specific causes of mortality (Serratosa et al., 2024).
Uncovering the location and spatial extent of animal threats is crit-
ical for managing endangered species (Kane et al., 2022; Olea &
Mateo-Tomas, 2014) and for mitigating human-induced mortality
(Serratosa et al., 2024).

While GPS tracking provides valuable insights into where and
when animals use particular habitats, it does not provide direct in-
formation on the specific behaviours animals perform within those
habitats. For instance, a site where an individual stops could be
used for resting, foraging or other behaviours—which cannot be
distinguished using GPS data alone. Complementing GPS-tracking
data with additional sensors offers insights into the behaviour and
energy use of elusive and cryptic animals (Shepard et al., 2008;
Smith & Pinter-Wollman, 2021; Spiegel et al., 2015; Tuia
et al., 2022; Williams et al., 2020). Tri-axial accelerometers (ACC)
are widely used in behavioural research, among other sensors
(Brown et al., 2013; Kays et al., 2015; Nathan et al., 2012). These
devices measure acceleration in three orthogonal axes (sway—x;

importantly, feeding behaviours were accurately classified (0.87 precision, 0.92
recall). We calculated an observation-specific confidence score and demonstrated
its effectiveness in identifying true- and false-positive classifications, in both
captive and free-roaming individuals. Finally, we used our model to reliably
identify feeding hotspots, where vultures can be at higher risk of poisoning.

4. Synthesis and applications. We provide a tool to help identify vulture feeding
hotspots, supporting carcass management efforts to prevent poisoning.
Integrated with near real-time tracking, our model can support global efforts to
combat scavenger poisoning. The training dataset, model and codes are provided
in a user-friendly platform, along with a conceptual framework, to encourage use

by ecologists and conservation practitioners.

accelerometer, behaviour classification, biotelemetry, conservation, griffon vulture, poisoning,
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surge—y; and heave—z) that change according to the animal's pos-
ture and locomotion. These measurements can be recorded either
continuously or in ‘bouts’ (i.e. sampling units) of a few seconds
at varying resolution (i.e. frequency, in Hz) and intervals (for ex-
ample, recording for 5s at 20Hz, every 10min). Different accel-
eration signatures enable the measurement of movement-related
energy expenditure (Gleiss et al., 2011; Halsey et al., 2009) and
can be used to distinguish among different behaviours (Shepard
et al., 2008); for example, for estimating flight duration in small
migratory passerines (Biackman et al., 2017).

Machine learning algorithms are used to classify raw ac-
celeration bouts into different behavioural classes (Nathan
et al., 2012; Resheff et al., 2014; Valletta et al., 2017; Wang, 2019;
Yu et al., 2021). These algorithms can operate in an unsupervised
manner, identifying similarities in acceleration data to produce
unlabelled clusters of similar measurements that subsequently
need to be manually classified into specific behaviours (Chimienti
etal.,2016; Wang,2019). Alternatively,supervisedlearninginvolves
training an algorithm with a dataset in which each behaviour is la-
belled, allowing the algorithm to ‘learn’ the distinctive acceleration
patterns of different behaviours (Nathan et al., 2012; Wang, 2019;
Yu et al., 2021). However, depending on the level of detail required
and on how distinctive the behaviours are, assembling a training
dataset can be laborious, as it typically requires direct observa-
tions of animals in the wild or in captivity, synchronized with the
ACC measurements (Campbell et al., 2013; Dickinson et al., 2021).
Despite these difficulties, supervised machine learning algorithms
have been successfully used to classify behaviours across diverse
animal groups, including baboons (Fehlmann et al., 2023), large
pelagic fish (Clarke et al., 2021), sea turtles (Jeantet et al., 2020),
condors and other vultures (Rast et al., 2024; Spiegel et al., 2013;
Williams et al., 2015). Commonly used algorithms include artificial
neural networks, extreme gradient boosting and random forests
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(Resheff et al., 2014; Yu et al., 2021). Random forests have the
advantage of being able to model complex interactions between
the often correlated predictor variables, therefore not requiring
the pre-processing and filtering of variables (Cutler et al., 2007),
and simplifying behavioural classification.

Once a machine learning model is trained, it can classify new,
unseen accelerometer data into the trained behavioural classes,
invariably resulting in some classification errors (Glass et al., 2020;
Jeantet et al., 2020). Errors emerge from a few, non-mutually ex-
clusive processes. First, acceleration bouts, particularly long ones,
may include transitions among behaviours, resulting in a mixture
of different acceleration signatures (Resheff et al., 2024). Second,
rare behaviours may be underrepresented or missing from the lim-
ited training dataset (e.g. seasonal and rare behaviours such as cop-
ulation). Third, the behavioural repertoire of some individuals may
be broader than what the algorithm is trained for. Because some
behaviours might be difficult to observe in captivity (e.g. flight be-
haviours, Williams et al., 2015), this last error is particularly rele-
vant for algorithms trained on captive individuals that are used to
predict the behaviours of wild animals (Dickinson et al., 2021). Still,
the models must choose the best fitting behavioural class among
the available options, even if none provides a particularly good fit.
These errors demand a mechanism to verify the accuracy of each be-
havioural classification, allowing the model to distinguish between
true-positive and false-positive classifications (Bidder et al., 2014;
Glass et al., 2020). While some studies offer guidance on how to
best use and analyse large acceleration datasets (e.g. Leos-Barajas
et al., 2017; Resheff et al., 2014; Williams et al., 2020), the complex-
ity of these tools remains a barrier for non-experts, hindering their
use in conservation science and practice.

Here we develop an accelerometer-based behavioural classi-
fication tool and validate its real-world application in ecology and
conservation, using griffon vultures (Gyps fulvus) as a case study.
As obligate scavengers, vultures support key ecosystem func-
tions by consuming carcasses and recycling nutrients (Buechley &
Sekercioglu, 2016). Yet, around the world, 70% of vulture species
are in danger of extinction, with poisoning driven by consuming car-
casses containing toxic substances being one of the leading causes
for population declines (lves et al., 2022; Ogada et al., 2012; Plaza
et al., 2019). Poisoning can be either intentional or unintentional.
For instance, poachers may lace carcasses with poison to prevent
these raptors from alerting environmental authorities of poached
wildlife (Mateo-Tomas & Lopez-Bao, 2020; Ogada et al., 2016), and
farmers may do so for combating pests and mammalian carnivores.
Anti-inflammatory drugs used to treat cattle are also lethal to vul-
tures, leading to poisoning at these carcasses (Lopez-Bao & Mateo-
Tomas, 2022; Ogada et al., 2012; Plaza et al., 2019). Several hundred
vultures may quickly gather to eat at a single carcass, increasing their
vulnerability to mass poisoning events (McNutt & Bradley, 2014).
Other scavenger species also feed on carcasses (Olea et al., 2019),
exposing them to similar risks of poisoning (Katzner et al., 2024;
Lopez-Bao & Mateo-Tomas, 2022). Early detection of carcasses
might facilitate their proper management to, for example, prevent
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vultures and other wild species from feeding on carrion with toxic
substances by removing these from the environment. Moreover,
when poisoning events are promptly detected, vultures and other
animals can undergo medical intervention (Acacio et al., 2023;
Anglister et al., 2023). Considering the vulture's large roaming areas
(Spiegel et al., 2015), tracking technology and behavioural classifica-
tion are essential tools to identify vultures' feeding events. Vultures
can therefore act as sentinels, facilitating carcass detection and
maximizing prompt intervention efforts to reduce detrimental ef-
fects associated with the consumption of contaminated carrion. For
instance, by reducing the number of fatalities at a poisoning event to
avoid long-term effects on species' populations (Acéacio et al., 2023;
Slabe et al., 2022).

In this study, our goals are to (1) develop an ACC-based be-
havioural classification algorithm, which, together with the training
dataset and a conceptual framework of the methodological work-
flow, is made freely available to conservationists and ecologists; (2)
validate the algorithm's classifications by comparing the confidence
scores of true-positive and false-positive classifications, using both
the training dataset and data from free-roaming vultures; and (3)
apply our novel algorithm to real-life scenarios with important con-
servation implications—that is rapid carcass detection to prevent
vulture poisoning. Ultimately, our goal is to combine technological
advancements in GPS and accelerometry to improve wildlife con-
servation efforts and to develop a tool that is easily transferable to

other systems.

2 | MATERIALS AND METHODS
2.1 | Studysystem

The study took place in Israel, where griffon vultures are critically
endangered (Mayrose et al., 2017). A historical population of thou-
sands of griffons is currently declining; three decades ago, there
were only 400 griffons in this population, and fewer than 200 in-
dividuals remain today (Hatzofe, 2020). Pesticide poisoning from
consuming laced carcasses is the leading cause of griffon mortal-
ity, accounting for 45% of documented deaths between 2010 and
2021 in this region (Anglister et al., 2023). Lead poisoning and in-
gestion of animals treated with anti-inflammatory drugs each con-
tribute to 6% of mortality events, posing additional threats to this
population (Anglister et al., 2023). To prevent the local extinction
of this species, the Israel Nature and Parks Authority (INPA) runs
an intricate management programme, including the provisioning of
contaminant-free food at supplementary feeding stations (Spiegel
et al., 2013, 2015), the release of captive-bred and translocated
griffons (Efrat et al., 2020), and individually tracking vultures using
GPS-Accelerometer transmitters, to identify poisoning events and
other threats. When wild carcasses are detected in a random loca-
tion within areas of known pastoral activity and poisoning history,
or when vultures exhibit minimal movement, suggesting they are

unwell, rangers are sent to the field to remove the carcasses and/
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or transport affected individuals to a wildlife hospital, underscoring
the critical role of GPS-tracking data for the conservation of this
population (Acécio et al., 2023).

Every year, approximately 100 free-roaming griffons are cap-
tured by the INPA using a cage trap, to identify the individuals
with metal and colour rings and with patagial tags. In these trap-
ping events, a few individuals are fitted with a GPS-ACC transmitter
(Ornitela OT-50) using a Teflon harness in a leg-loop configuration.
The transmitters are equipped with solar panels that recharge the
batteries and transmit the collected data via the GSM network, elim-
inating the need for recapturing individuals to retrieve information.
The current study did not require additional ethical approval since it
uses tracking data collected from these GPS-ACC tags and no cap-
tures of free-roaming vultures were conducted specifically for this
study. The capture and tagging procedures were approved by the
ethics committee of the Israel Nature and Parks Authority (permit
number 42166).

2.2 | Conducting observations to build an ACC
training dataset

Between January 2020 and February 2022, we deployed GPS-ACC
transmitters on 31 griffon vultures, 14 captive vultures, and 17 free-
roaming individuals. The captive vultures were housed in 4 breeding
programmes, rehabilitation or wildlife facilities in Israel and in Spain:
Ramat Hanadiv (Israel,n=4), Hai-Bar Carmel (Israel,n=4), Cabarceno
Wildlife Park (Spain, n=3) and GREFA wildlife hospital (Spain, n=3).
In each cage, there were 6 to 12 vultures. Additional behavioural
data was collected in Israel for 17 free-roaming griffon vultures. One
individual dropped his transmitter and was deployed with another
device (thus there were 31 individuals but 32 transmitters). In Israel,
the transmitters were deployed using a leg-loop harness, and in
Spain, the loggers were deployed using a backpack harness.

The transmitters were programmed to collect GPS and ACC at
independent schedules and differently for captive and free-roaming
griffons. The transmitters of captive griffons were programmed to
collect tri-axial accelerometer data at 20Hz almost continuously
(10-min-long periods, with a 1s interval in between). These 10min
bouts were parsed into 5s bouts to match the free-roaming data-
set. Bouts of 5s at 20Hz were recorded for free-roaming griffons
every 10min, depending on the transmitter's battery charge (see
Supporting Information for details).

To classify each 5s ACC bout as a particular behaviour, we
conducted direct observations and video recordings of the tagged
griffons, both in captivity and in the wild. In total, we performed ob-
servations for 79 days. Direct observations of captive and wild grif-
fons were conducted with a spotting scope (Swarovski ATX spotting
scope 85mm), ensuring a sufficient distance to not disturb the vul-
tures' natural behaviour. The video recordings were captured using
a camera mounted on a wall support in Spain, and with nest cameras
at the captive breeding facilities, or live streaming nest cameras at
wild nests in Israel (BirdLife Israel, 2022). The direct observations of

wild vultures were performed at roosting sites, at approximately 250
of the individuals.

We recorded six ecologically important behavioural classes:
‘Standing’—vulture is resting upright (could be roosting, and may
include minor preening and changes in body posture); ‘Lying'—vul-
ture is lying parallel to the ground, either resting or incubating;
‘Feeding’—vulture is either directly eating from a carcass or engaged
in intense social interactions next to the carcass (e.g. fighting or pos-
turing towards other vultures before eating); ‘Ground’—includes all
other active ground behaviours that are not directly related to feed-
ing or resting (e.g. walking, running, hopping, etc.); ‘Flapping'—ac-
tive flight with wingbeats; and ‘Soaring'—passive flight (e.g. thermal
soaring, gliding, etc.). Because long flights do not occur in captivity,
we used GPS-ACC data from 17 free-roaming griffons in southern
Israel to classify ‘Soaring’ (passive) and ‘Flapping’ (active) flight be-
haviours. We identified segments of continuous flight using the GPS
ground speed (ground speed >4m/s) and plotted the acceleration
measurements taken during these flights. The acceleration signa-
tures of soaring and passive flights are so distinctive (Figure 1b,c,
Williams et al., 2015) that there was no need to ground-truth these
behaviours with visual sightings (which would be challenging, con-

sidering their large roaming areas).

2.3 | Pre-processing the ACC data and model
training

Before deployment on the griffons, 50 transmitters were calibrated
on a levelled surface, in all six possible perpendicular orientations.
This calibration allowed us to obtain a transmitter-specificinstrument
error for translating raw acceleration data (in mV) into acceleration
units (m/s?). For 14 transmitters (out of 32) without specific error
values, we used the average error across the measured transmitters
(n=50). The calibration values used are publicly available on GitHub.

We identified the start and end of each accelerometer bout and
excluded from the ACC behavioural dataset all bouts shorter than
5s, as well as all bouts that matched more than one behavioural class
during the 5s period. Each acceleration bout was summarized into
47 statistical features commonly used in other studies using ma-
chine learning algorithms to perform behavioural classifications of
ACC data (e.g. Nathan et al., 2012; Yu et al., 2021). For a full list
of features, see Table S1. All analyses were performed in R (R Core
Team, 2023).

Using the R packages ranger (Wright & Ziegler, 2017) and parsnip
(Kuhn & Vaughan, 2024), we built a random forest model to classify
behaviours using the annotated acceleration bouts. We started by
splitting this dataset into ‘training’ (67%) and ‘testing’ (33%) subsets,
an ad hoc measure commonly found in other machine learning ap-
plications (e.g. Jeantet et al., 2020). Using the ‘training subset’, we
built a random forest model and we evaluated the performance of
our model using the ‘testing’ subset. We built a confusion matrix and
calculated three performance metrics for the full model and for each
behaviour: (i) accuracy; (ii) precision; and (iii) recall. The equations
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FIGURE 1 Examples of accelerometer-based classification of griffon vulture's behaviours. Acceleration measurements of bouts classified
as: (a) ‘Ground’, (b) ‘Soaring’ flight, (c) ‘Flapping’ flight, (f) ‘Feeding’, (g) ‘Lying’ and (h) ‘Standing’. The acceleration data was collected at

20Hz during 55 for three orthogonal axes (d): Sway—X (red), surge—Y (green), and heave—Z (blue). () GPS tracking of a griffon vulture over
1day. The colours of the GPS locations match the behaviours recorded on that location: ‘Ground’—red; ‘Soaring’—green; ‘Flapping’—violet;
‘Feeding’—yellow; ‘Lying’—light blue; ‘Standing’—black. This illustrates the large daily movements of griffon vultures, emphasizing the
logistical challenges associated with surveillance in the desert study area. Photo credit: Yacov Ben Bunan.

and descriptions for each metric can be found in Table 1. For ex- (e.g. 85% of all ‘Feeding’ predictions were indeed ‘Feeding’ obser-
ample, a model may have 0.90 accuracy (i.e. 90% of all behaviours vations and 15% were a different behaviour and wrongly identified

were predicted correctly), 0.85 precision for a specific behaviour as ‘Feeding’), and 0.80 recall of a specific behaviour (e.g., 80% of
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TABLE 1 Performance metrics used to evaluate the random
forest model performance, considering the true-positive (TP),
true-negative (TN), false-positive (FP) and false-negative (FN)
predictions.

Performance metric Equation
Accuracy — TP+TN
TP+TN+FP+FN
Precision _TP_
TP+FP
Recall _TP_
TP+FN

‘Feeding’ observations were correctly predicted as ‘Feeding’ and
20% were wrongly classified as another behaviour).

After training and evaluating the performance of the algorithm
with the split annotated dataset, we built the final random forest
model using the full dataset for training, likely improving the perfor-
mance of the algorithm. This full algorithm was then used to classify
unobserved accelerometer bouts to identify feeding in free-roaming
vultures (see below).

More details of the model building sequence can be found in
Data S2, and a full description of the model building process can
be found in Figure 2. All the training data and the code necessary
to train and build the algorithm are publicly available on Zenodo
(Acécio et al., 2025) and GitHub (www.github.com/Orrslab/ACC_
behavior_classification). The repository includes a tutorial suitable
for two types of users: those who may wish to apply our (already-
trained) model to their own data (e.g. researchers and conservation-
ists working on similar vulture/raptor species), and those wishing
to use our pipeline for training and building their own model (e.g.
researchers and conservationists working on other species, or with
different sampling protocols). With these tutorials, our main goal is

to bridge the gap between researchers and practitioners.

2.4 | Calculating confidence scores to validate
model predictions

Using the training dataset, we calculated a confidence score for
each behavioural classification (i.e. for every bout). This confidence
score is the level of consensus among the different decision trees
within the random forest (i.e. the proportion of trees that agree on
the highest scoring prediction). For example, if the model classifies a
given bout as ‘Feeding’ with a confidence score of 0.7, then 70% of
the trees agreed on that classification. To determine the validity of
this score as an indicator of the behavioural classification's reliability,
we compared the scores of correctly identified behaviours (true-
positives) and of incorrectly identified behaviours (false-positives)
in the testing subset. We then used a generalized linear mixed
model (GLMM) with an ordered beta distribution and a logit link to
compare scores of the two groups. The confidence score (range O
to 1) was the response variable, and the explanatory variables were
the Boolean correctness of the model prediction (categorical; true-
positive or false-positive), the predicted behaviour (categorical)

and their interaction. The model included device ID as a random
intercept. The GLMM was built using gimmTMB R package (Brooks
et al., 2017), and the fit of the model and residuals were evaluated
using DHARMa R package (Hartig, 2022).

To understand the effect of the harness configuration (backpack
or leg-loop) on the confidence scores, we compared the confidence
scores of true-positive and false-positive classifications of be-
haviours recorded with the two different harnesses. We performed
this comparison for the two behaviours with the most observations:
standing and feeding. We built two separate GLMMs for each be-
haviour. Each GLMM included the confidence score as a response
variable, and the Boolean correctness of the model prediction
(true-positive or false-positive), the predicted behaviour, and their
interaction as explanatory variables. We also included device ID as a
random intercept. To further explore the influence of harness type
on the behavioural classification, we trained a new random forest
model using only the leg-loop data (n=3428) and tested it on the
backpack dataset (n=714). This model was trained on a subset of
bouts that included only the three behavioural categories present in
both datasets (‘Standing’, ‘Ground’ and ‘Feeding’).

2.5 | Using the confidence score to validate
‘Feeding’ predictions of free-roaming vultures

To assess the reliability of our algorithms at classifying unobserved
data, we validated predicted ‘Feeding’ behaviours of free-roaming
vultures. We focused on this behaviour due to its importance for
identifying poisoning events, the main cause of vulture mortality in
our study area (Anglister et al., 2023). This validation is important
because even a highly accurate model introduces classification
errors. For example, considering a transmitter collecting 72 bouts
a day, with 10 of those classified as ‘Feeding’, and a model with
90% precision for ‘Feeding’. Over the course of 1week, the device
would collect 504 bouts, 70 of which were classified as ‘Feeding’.
Considering the model's precision, 7 of these ‘Feeding’ classifications
would be false-positives which, extrapolating for a population of
50 vultures, would correspond to approximately 350 false-positive
feeding predictions per week.

We combined information about the location of supplemen-
tary feeding stations, satellite imagery, and GPS positions from
griffon-borne transmitters to assess the likelihood that the unob-
served vultures' ACC-predicted ‘Feeding’ behaviour represents a
true feeding event. Between November and December 2020, we
collected GPS and accelerometer data from 7 tagged free-roaming
griffons in southern Israel (transmitter schedule described in the
Supporting Information). These individuals were selected be-
cause they provided consistent high-resolution data throughout
this two-month period, making them suitable for the fine-scale
analysis of feeding behaviour. We matched a GPS position to an
accelerometer bout if they were recorded within 5min of each
other. We designated four situations with decreasing probability
of representing real feeding events based on the GPS location
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and GPS ground speed: ‘Station'—if the ACC identified a feeding
event within 250 m from a supplementary feeding station, it likely
represents a true feeding event (likely true-positive predictions);
‘Open area'—if the ACC identified a feeding event at a GPS posi-
tion that is at an open landscape (but not on a cliff), where natu-
rally occurring food is sometimes available (wildlife or livestock
carcasses), it may represent a true feeding event; ‘Cliff'—if the
ACC identified a feeding event on cliff faces, where food is largely
absent but where vultures spend a large proportion of their time
roosting, it is not likely to be a true feeding event; ‘Flight'—if the
GPS ground speed was >4 m/s, the vulture was probably flying,
and therefore, it is likely a false feeding event. The 250 m radius
around the feeding station accounted for the vultures' behaviour
of standing nearby and overlooking the station before feeding.
Given the potential 5-min offset between GPS fixes and acceler-
ometer bouts, this buffer allows for the possibility that a griffon
could move to the station and begin feeding within that time win-
dow. All points were mapped on satellite images of the study area
and were visually examined after this classification to confirm the
assignment to each situation (for example, to confirm vulture pres-
ence on a cliff, in an open area, or near a feeding station).

To determine if the confidence score of the classification can be
used to identify false-positives in free-roaming griffons, we com-
pared the algorithm's confidence scores of ‘Feeding’ predictions
at ‘Stations’ (i.e. high probability of true-positives) with ‘Feeding’
predictions at ‘Cliffs’ or during ‘Flight’ (i.e. high probability of false-
positives). We omitted the ‘Open area’ situation since it could rep-
resent a mixture of feeding and non-feeding behaviours and was
therefore less conclusive for this comparison. We used a GLMM,
with a beta distribution and a logit link, in which the response vari-
able was the algorithm's confidence score, and the explanatory vari-
able was the classification accuracy according to the GPS location
(likely true-positive or likely false-positive). We included device ID

as a random intercept.

2.6 | Case study: Identification of vulture feeding
hotspots to prevent poisoning

To demonstrate the applicability of the ACC algorithm to a real-
world conservation problem, we used it to identify griffons' feeding
hotspots outside supplementary feeding stations (i.e. places where
safe carcasses are provided to vultures). Considering the high risk
of carcasses outside feeding stations being contaminated with
toxic substances for vultures (e.g. pesticides or NSAIDs, Anglister
et al., 2023), their rapid detection and removal from the field is
a priority for wildlife authorities in Israel (Acacio et al., 2023).
Accordingly, mapping those areas where vultures are feeding on
potentially contaminated carcasses may guide management actions.

In November 2022, we collected 1 month of GPS and acceler-
ometer data for 51 free-roaming griffons in Southern Israel, aiming

to identify the locations of feeding events that occurred outside

supplementary feeding stations (events that present a higher risk of
poisoning). After applying the random forest algorithm to this data-
set, we matched the accelerometer ‘Feeding’ bouts with a GPS loca-
tion using three criteria. First, if they were collected within 5min of
each other, and if the GPS ground speed was below 4 m/s (indicating
the bird was not flying). Second, if no GPS position matched these
criteria, we matched ACC bouts with GPS locations if they were
collected within 11 min of each other (while maintaining the ground
speed criteria) to account for a possible delay in the time to acquire
a position by the GPS. If no GPS position matched these criteria,
the ‘Feeding’ bout was discarded from further analysis because we
could not infer where the feeding event took place.

Using the results of the previous analyses, where we assessed
if the confidence score could be used to minimize the number of
false-positives, we excluded bouts with confidence scores below
0.5. This conservative threshold was chosen to avoid eliminating
true-positives, as failing to detect feeding areas posed a greater
risk for griffon conservation than including false-positive obser-
vations. However, this threshold is system- and data-specific and
is expected to be different for other species and systems. We also
excluded ‘Feeding’ bouts that occurred within supplementary feed-
ing stations, at known roost sites (the latter likely representing false
positives), and outside the study area (southern Israel and Jordan).
With the remaining locations (n=264), we created a 2D kernel (grid
size=1000, bandwidth=bandwidth.nrd function from MASS R
package, Venables & Ripley, 2002), portraying the density of loca-
tions, using bkde2D function of KernSmooth R package (Wand, 2024).
On this density map, we overlayed the information of known car-
casses independently identified in the field, outside feeding stations,
during this same time period (n=5). The carcasses were located by
local rangers, either through reports from farmers, chance encoun-
ters during field patrols, or via an alert system that flags unusual
landings of tracked raptors based on GPS data. This system uses
location data from several species to identify potential poisoning
events, independent of accelerometer-based behavioural classifica-
tions used in this study.

Finally, to assess if the behavioural classification impacted the
designation of feeding hotspots compared to a mapping based on
GPS metrics alone, we built an additional density map using all GPS
locations from the same dataset, without filtering for ‘feeding-only’
locations. We excluded locations that occurred within supplemen-
tary feeding stations, at known roost sites, or where the ground

speed exceeded 4 m/s.

3 | RESULTS
3.1 | Behavioural classification
We collected 5783 behavioural observations for 14 captive and 17

free-roaming griffon vultures (a total of 31 individuals) during 57 days

(18 days for captive individuals and 39 for free-roaming individuals).
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FIGURE 3 Confusion matrix of the random forest model to classify vulture behaviour based on accelerometer data. Rows represent the

behaviour predicted by the algorithm we developed, and columns represent the behaviours we observed directly. The colours in the diagonal
show the precision for each behaviour, with darker colours indicating higher precision. The size of the text outside the diagonal indicates the
proportion of false-positives in each behavioural category, with larger numbers indicating a larger proportion of false-positives. For example,

more ‘Feeding’ bouts were wrongly classified as ‘Standing’ than as ‘Ground’, and none of the ‘Feeding’ bouts were wrongly classified as

‘Soaring’, ‘Flapping’ or ‘Lying’.

FIGURE 4 Model predicted confidence
scores of true-positive (blue) and
false-positive (dark red) behavioural
classifications. The darker points and
error bars indicate the model predicted 08
confidence scores and 95% confidence ' +
intervals for true-positive and false-
positive behavioural classifications. The
lighter points show the raw data.
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The most common behaviour was ‘Standing’ (3488 observations),
and the least common behaviour was ‘Ground’ (67 observations,
Table S2). When training the random forest model with 67% of the
observed (i.e. ground-truthed) dataset, we achieve an overall accu-
racy of 0.96, precision of 0.89, and recall of 0.82. Specifically, the
model predicted ‘Feeding’ behaviours with precision of 0.87 and re-
call of 0.92 (Figure 3; Table S2). ‘Ground’, on the other hand, had the
poorest predictions (precision=0.57, recall=0.15). The indirectly
inferred behaviours ‘Soaring’ and ‘Flapping’ were well predicted by
our model (‘Soaring’: precision=0.99, recall=0.99; ‘Flapping”: preci-
sion=0.98, recall=0.95).

Lyi'ng Stan'ding Gro'und Flap'ping Soa'ring

Observed behavior

3.2 | Performance of the confidence score in
validating model predictions

Overall, the confidence scores of correctly identified behaviours
(true-positives) were significantly higher than the scores of inac-
curately identified behaviours (false-positives; GLMM: model es-
timate + SE=0.876+0.195, p-value<0.001, Figure 4; Table S3).
‘Ground’ behaviours, which had the lowest number of observations
(h=67), were the exception, with significantly higher confidence
scores of false-positives compared to true-positives (Figure 4).
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‘Ground’ true-positive behaviours also had the lowest confidence proportion of feeding bouts identified on cliffs likely reflects the
scores (mean confidence score+SD=0.41+0.03). ‘Soaring’, ‘Lying’, considerable amount of time griffons spend in these areas. Overall,
‘Standing’, and ‘Flapping’ were the behaviours with the high- of all ‘Feeding’ bouts identified by the algorithm, 72%-85% (all
est true-positive confidence scores (mean confidence score+SD; ‘Station’ bouts + at least part of the ‘Open area’ bouts) were likely
‘Soaring’=0.99 +0.08, ‘Lying’=0.98 +0.06, ‘Standing’=0.98+0.08, real feeding events. Furthermore, after removing ‘Cliff’ and ‘Flight’
‘Flapping’=0.93+0.12). ‘Feeding’ had on average a high con- bouts (easily identifiable using only the GPS location, satellite im-
fidence score but also a large variation (mean confidence agery, and ground speed), 85%-100% of the ‘Feeding’ predictions
score+SD=0.82+0.15, Figure 4; Tables S2 and S3). (all ‘Station’ bouts + at least part of the ‘Open area’ bouts) were
There were no significant differences between the confi- indeed likely feeding events.

dence scores of behaviours recorded with backpack or leg-loop Importantly, the confidence scores of ‘Feeding’ bouts likely to
harnesses for the two tested behaviours: ‘Standing’ (GLMM: esti- be true-positives were higher (mean+SD: ‘Station’=0.75+0.16)
mate + SE=0.374+0.283, p-value=0.283) and ‘Feeding’ (GLMM: than the scores of bouts likely to be false-positives (‘Cliff’ and
estimate+ SE=-0.725+0.798, p-value=0.364, Figure S1; Table S4). ‘Flight’=0.56 +£0.19). This comparison was statistically significant
The model trained on leg-loop data and tested on backpack data (GLMM: estimate+SE=-0.805+0.167, p-value<0.001, Table S5).
had high overall accuracy (accuracy=0.86) and performed well at When considering solely the ‘Feeding’ bouts with a confidence score
classifying ‘Standing’ behaviours (‘Standing’ precision=0.99; re- over 0.5, 114 bouts (88.4%) occurred within a supplementary feed-
call=0.91). All true ‘Feeding’ behaviours were correctly identified ing station and were likely true-positives. This threshold maximizes
as such (‘Feeding’ recall=1). However, most ‘Ground’ behaviours the number of true-positive predictions, while minimizing the num-
were misclassified as ‘Feeding’, which reduced the precision of the ber of false-positives (Figure 5).

‘Feeding’ category (‘Feeding’ precision=0.52). Similarly to the full

model, ‘Ground’ behaviours had the poorest performance (Table S5).
3.4 | Mapping vulture's feeding hotspots to
facilitate poisoning identification

3.3 | Confidence score to validate ‘feeding’

predictions of free-roaming vultures In November 2022, we collected 4595 ‘Feeding’ bouts of 51 grif-
fon vultures in our study area. After sequentially removing the

We used the GPS locations to validate 175 ‘Feeding’ bouts from bouts without a GPS location (n=586), bouts inside feeding stations

7 free-roaming vultures in Southern Israel. Overall, 126 ‘Feeding’ (n=2534), outside Southern lIsrael and Jordan (n=157), bouts lo-
bouts (72%) occurred within a supplementary feeding station cated in known roosts (n=979), and bouts with a confidence score
(‘Station'—likely true-positives), 22 bouts (13%) were located on below 0.5 (n=460, Figure 5), we retained 264 bouts of 31 vultures
‘Open areas’ (likely a mix of true- and false-positives), 20 bouts that allowed us to map their feeding hotspots.

(11%) were on ‘Cliffs’ (likely false-positives), and 7 bouts (4%) We built a KDE with the remaining 264 ‘Feeding’ bouts and

were in ‘Flight’ (likely false-positives, Figure 5). The relatively high detected a hotspot of feeding events in the Judean Desert. This

(a) (b)
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- Open area
W ciiffs

[ Fiignt

- Station

Validation
[ Likely true-positive
[ Likely false-positive
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FIGURE 5 Validation of ‘Feeding’ behaviours using data from free-roaming griffons. (a) Percentage of ‘Feeding’ predictions (n=175)
located within a supplementary feeding station (‘Station'—blue), on open landscape (‘Open area’—green), on cliffs (‘Cliffs’—dark brown) or in
flight (‘Flight'—light brown). (b) Distribution of the confidence scores of ‘Feeding’ bouts likely to be true-positives (located within a feeding
station, in blue) and likely to be false-positives (located on cliffs or in flight, in dark red). The dashed line indicates the confidence threshold
of 0.5, a conservative threshold that reduces the number of false-positives, while including nearly all true-positive predictions.
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hotspot is consistent with the INPA ranger's reports for this same the GPS-only KDE failed to identify a key feeding hotspot in

period, where 4 out of 5 reported carcasses outside feeding sta- Jordan. This confirms that the algorithm can be used to identify

tions were within the KDE (Figure 6). This density map differed areas with a high probability of vultures' feeding on potentially

substantially from the one based solely on GPS-derived metrics contaminated carcasses and highlights the added value of the be-

(Figure S2), containing 1938 potential feeding locations. Notably, havioural classification.

9 Ground-truthed carcasses
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FIGURE 6 Acceleration-based behavioural classification as a tool to identify griffon vultures' feeding hotspots outside supplementary
feeding stations. The red points show the vulture feeding locations in Southern Israel and Jordan over November 2022, identified using
the random forest algorithm. The blue markers indicate the location of ground-truthed carcasses outside feeding stations; the darker blue
indicates two carcasses in approximately the same location. The polygons indicate the density of vulture feeding locations, showing the
areas where vultures are at greater risk of poisoning. The polygon colours indicate the density of vulture feeding locations, with blue areas
having lower density and red areas higher density. The inset shows the location of the study area in the world.
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4 | DISCUSSION

Recent advancements in tracking technology and analytical tools
are enhancing our understanding of animal ecology and behaviour
and improving its applications for biodiversity conservation (Tuia
et al., 2022; Williams et al., 2020). In this study, we add to this body
of literature by developing a machine learning algorithm to classify
griffon vultures' behaviours, thoroughly validating the behavioural
classifications, and using them to inform conservation efforts,
namely carcass detection to prevent poisoning. Our model accurately
predicted griffons' behaviours, allowing for the identification of
potential feeding events outside feeding stations and the mapping of
feeding hotspots where vultures and other scavengers can engage
in risky behaviours such as the consumption of poisoned carcasses
(Peters et al., 2023). These maps may become fundamental tools
for monitoring prioritization and for optimizing on-the-ground
actions for the conservation of vultures and other scavengers (e.g.
the detection of poisoning events, Rast et al., 2024). Another major
contribution of this study is the use and validation of the algorithm's
confidence in each behavioural classification, showing the utility
of this approach for other behaviours and contexts. Assessing the
degree of confidence in this manner is rarely done in ecological
studies (Bidder et al., 2014), but we highlight how this approach
may minimize misclassifications (e.g., false-positives) especially
when resources for ground truthing are limited. Our algorithm
and training dataset are made accessible to other researchers and
conservationists studying vultures and similar species. Moreover,
they can be easily adapted to classify the behaviours of other species
in diverse study systems. Importantly, to further promote this
usability, we provide a methodological workflow to guide potential
users in the process of identifying behaviours of wild animals based

on accelerometer data.

4.1 | Accelerometer-based behavioural
classification as a tool for vulture conservation

With our behavioural classification model, we were able to identify
vulture feeding hotspots in Southern Israel. Indeed, the areas where
our tracked vultures displayed ‘Feeding’ behaviours matched the
locations of known ‘wild’ carcasses (i.e. outside feeding stations)
during this same period. This case study used only a single month's
worth of high-resolution data embedded within a long-term lower
resolution tracking effort (Acacio et al., 2024; Spiegel et al., 2013),
but it exemplifies how GPS and accelerometer data can be used
to direct conservation efforts. The use of GPS tracking has been
instrumental for vulture conservation in Israel (Spiegel et al., 2013),
particularly for the detection of poisoning events (Acacio et al., 2023;
Anglister et al., 2023). The local government environmental agency,
INPA, developed a near-real-time alert system that warns rangers
whenever a vulture lands at a suspicious area and when vultures
are either moving very little or are suspected to be dead (Nemtzov
et al, 2021). Rangers then actively respond to these alerts by

inspecting the area and removing the carcasses; therefore, reducing
the number of false alarms is important—both to reduce costs and
workload, as well as avoiding erosion of rangers' responsiveness.

Asimilar near real-time alert system, using GPS data, has also been
used for the monitoring of African elephants (Loxodonta Africana,
Wall et al., 2014) and to track California condors (Gymnogyps cali-
fornianus) in the vicinity of wind farms (Sheppard et al., 2015). It has
also been suggested as an anti-poaching tool to prevent the extinc-
tion of large mammals (O'Donoghue & Rutz, 2016). We propose that
all these systems could be improved by using accelerometer data
to remotely identify animal behaviour and risky events sooner and
more reliably. Indeed, our results show that relying solely on GPS-
derived filters to identify potential feeding hotspots failed to iden-
tify a key feeding hotspot in Jordan and produced over seven times
more data points, many of which were likely false-positives. Such an
overload of low-quality alerts could lead to reduced responsiveness
by the rangers, ultimately undermining conservation efforts on the
ground.

Combining maps of feeding hotspots (either fixed or season-
specific ones) with similar near real-time alert systems may be crucial
for vulture management and conservation. For example, the feeding
areas that griffons use systematically throughout the year should be
prioritized in terms of surveillance and sanitation efforts to prevent
vultures (and other scavengers) from accessing carcasses contami-
nated with toxic substances. Additional management actions could
be implemented, such as establishing new supplementary feeding
stations in these areas or increasing carcass supply at existing sta-
tions, either all year-round or during particular seasons, to match
potential seasonal changes in vultures' activity areas. Additionally,
the hotspots could be used to implement geofences where data
collection and transmissions would be at higher frequency. This in-
creased resolution may be critical in poisoning events, where the
actual feeding may be quite fast (sometimes consuming a carcass
within minutes) and vultures may perish quickly, depending on the
type and amount of toxic substance ingested. Then, information re-
garding the griffon's location and behaviour is obtained and commu-
nicated faster: when a griffon lands in these areas and only if it feeds
there (as indicated by the ACC classification), an alert should be sent
to the rangers for immediate carcass inspection. While the system
should also trigger alerts for any feeding events detected outside
feeding stations (to allow for carcass inspection and potential re-
moval to reduce the risk of poisoning), identifying risky hotspots can
help optimize resource allocation and prioritize conservation actions
in high-risk areas.

Around the world, an increasing number of individuals of mul-
tiple vulture species are being tracked with GPS-Accelerometer
devices, showing that they roam exceptionally large areas in their
daily movements (Kane et al., 2022; Spiegel et al., 2015). Considering
that about 70% of vulture species are endangered (lves et al., 2022;
Ogada et al.,, 2012; Plaza et al., 2019), surveillance systems that
combine GPS tracking with accelerometry may be a useful tools to
improve management actions in their large roaming areas to com-

bat major threats such as poisoning. For instance, such ACC-based
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systems will enhance existing applications of GPS-tagged vultures
to inform on-ground actions against illegal wildlife persecution (Rast
et al., 2024; Rodriguez-Pérez et al., 2025) or to improve regulations
for carrion disposal to feed vultures and other wild species (Mateo-
Tomas et al., 2023). Future studies could apply our methodology to
publicly available GPS-ACC datasets to identify high-risk areas for
vultures and guide targeted conservation interventions at a larger
geographic scale.

Our thoroughly validated training dataset can also be used to
classify the behaviour of griffons in other populations, as well as
other old and new-world vulture species, particularly in Africa and
Asia, where vulture populations continue to decrease. For exam-
ple, our algorithm and training dataset could be used to predict
the behaviours of endangered Gyps species in Africa and Asia (e.g.
Gyps africanus, Gyps coprotheres, Gyps bengalensis, among others),
or even other vulture species (e.g. Torgos and Trigonoceps spe-
cies), considering their morphological and behavioural similarities
with the griffon vulture. The use of surrogate species to identify
accelerometer-based behaviours has been examined in other sys-
tems, with a variety of results. For example, the behaviours of do-
mestic dogs were good predictors of the behaviours of dingoes
and cheetahs (Campbell et al., 2013), but the behaviour of domes-
tic caprids did not predict well the behaviour of their wild counter-
parts (Dickinson et al., 2021). Therefore, we recommend caution
when using our trained model to classify the behaviour of other
vulture species. In addition, our algorithm and modelling pipeline
can be easily adapted for other, not related, animal species, as long
as researchers provide their own training dataset for their study
species.

4.2 | Validating the accuracy of predictions of
unobserved behaviours

Tri-axial accelerometers and classification algorithms have
increasingly been used to obtain fine-scale behaviour of wild animals
(Nathan etal., 2012; Resheff et al., 2014; Wang, 2019; Yu et al., 2021).
However, after training and testing the model on a validated dataset,
the model must classify unobserved and, sometimes, unknown
behaviours. In this case, the model then matches the unknown
behaviour with the best fitting known acceleration signature,
resulting in misclassifications (Glass et al., 2020). Most ecological
studies fail to acknowledge this limitation and do not provide a metric
of how likely a particular classification is to be true (Glass et al., 2020).
Here we tackle this methodological gap and calculate a confidence
score, which allows us to distinguish between true-positive and
false-positive classifications. Our approach is computationally
simple to implement and does not require running more complex
classification models. In addition to the confidence scores, we used
biologically relevant information to validate observations classified
as ‘Feeding’. For this subset of data, 15% of the observations were
likely misclassifications because they occurred on cliffs (where there
is no food in our case) or in flight. Filtering out observations based

ES: smsicropisa sy

on easily accessible metrics (here, the topography, knowledge of the
behaviour of the species, spatial position and GPS ground speed), as
well as any observations with a confidence score below a relevant
threshold, increases the accuracy of behavioural classifications.

Selecting filtering thresholds is always a balance between two
types of errors. Here, we considered a conservative threshold of 0.5
to distinguish true-positive and false-positive ‘Feeding’ predictions
of free-roaming griffons, at the risk of including some false-positive
predictions in our dataset (Type | error). However, in this case, the
risk of not including part of the true-positive predictions (Type Il
error) is higher than including some false-positives; not including all
true-positives could mean that some feeding hotspots would not be
identified, potentially compromising sanitary management and over-
looking potential feeding and poisoning events. We encourage other
researchers to use a similar approach whenever possible, combining
confidence scores with ground-truthing information, to improve the
accuracy of their conclusions.

In addition, we note that different behaviours, or even the same
behaviour in different species or with different accelerometer de-
vices, may have different confidence score distributions. For exam-
ple, with our dataset, a threshold of 0.9 could have been suitable for
distinguishing flapping and soaring flight behaviours, to study, for in-
stance, flight biomechanics. Therefore, the threshold of confidence
should consider the underlying distribution of confidence scores for
the behaviours in mind and should be defined according to this and
the study objectives, balancing the risks of data loss with the costs
of including false-positives in the dataset.

Finally, quantifying temporal correlations between behaviours
could also help improve model performance or assist in post-
processing filtering of the classifications (Data S3; Figure S3). For
instance, it is possible to combine a correlation matrix of the be-
haviours with the confidence scores. In our dataset, ‘Feeding’ is
often followed by other ‘Feeding’ behaviours (Figure S3c). Thus, if a
high-confidence ‘Feeding’ behaviour is followed by a low-confidence
‘Feeding’ prediction, the strong positive dependency between these
two behaviours could support treating the second ‘Feeding’ as a
likely true-positive. Future studies could also implement more com-
plex models that allow for the incorporation of the correlation matrix

within the model.

4.21 | Challenges and considerations of
accelerometer-based behavioural classification

Different tag placement and different attachment methods can
greatly influence accelerometer signatures and consequently the
behavioural classifications (Garde et al., 2022). Nevertheless, our re-
sults show that our algorithm is reliable for more than one attachment
method, further increasing its usefulness. These non-significant dif-
ferences may result from the similarity in logger placement between
the two attachment types (about 3cm difference), as well as from
the limited spinal flexibility of griffon vultures. Still, the large con-
fidence intervals in this comparison (due to the small sample size
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for backpack harnesses), as well as the difficulty of our algorithm in
classifying ‘Ground’ behaviours recorded with a backpack harness,
show that this topic deserves further investigation with larger sam-
ple sizes and with other species.

After building the random forest, it is crucial to validate its accu-
racy, precision, and recall. In our study, the overall model was highly
accurate, yet behaviours differed in their precisions. As expected,
‘Ground’ was consistently the behaviour with the poorest predic-
tions across all our validations. This behavioural category included
several, quite distinct, ground behaviours (like walking, running,
hopping, etc.), in an attempt to account for all possible behaviours
a griffon may display and to minimize misclassifications at the cost
of losing accuracy (Glass et al., 2020). ‘Feeding’, on the other hand,
was accurately classified by our model; however, despite a relatively
large number of bouts in the training dataset (n=587), the confi-
dence scores of this behaviour had large variance. A possible rea-
soning is that the griffon's feeding behaviour is highly complex and
may include rapid shifts between fighting, posturing (spreading the
wings), as well as eating per se (Bosé & Sarrazin, 2007)—all insepa-
rable within a 5s timeframe. Including so many different postures in
a single behavioural category results in high variation of confidence
scores.

In addition, the number of conspecifics within a feeding event
may further influence the behaviours that individuals display while
foraging (Bosé et al., 2012), increasing within-individual variability
for both wild and captive vultures. To mitigate the effect of within-
individual variability in our training dataset, we ensured that multiple
captive individuals were feeding at the same carcass to replicate the
wild feeding conditions. Finally, it is likely that individuals differ in
their behaviour while foraging (e.g. dominant vs. subordinates, Bosé
etal.,2012; Bose & Sarrazin, 2007), emphasizing the need to improve
behavioural classification models and account for individual differ-
ences in behaviour (Kirchner et al., 2023). In general, we suggest that
future models can improve accuracy and precision by further split-
ting our six classes into subclasses that reflect more homogenous
elementary behaviours (e.g. pecking, tearing meat apart, fighting).
Merging ‘Ground’ and ‘Feeding’ categories could also potentially im-
prove the model's accuracy; however, since these two behaviours
are not necessarily linked, this would come at the cost of decreased
resolution in detecting true feeding events, compromising manage-
ment and conservation applications. For specific applications fo-
cused solely on identifying feeding activity, an alternative approach
could involve merging all feeding and all non-feeding behaviours in
a binary classification. This could simplify the interpretation, and we
suggest that this option is worth exploring in a future study.

Despite the potential of accelerometer-based behavioural classi-
fication, collecting such large volumes of data can be costly, both in
terms of data transmission and storage, as well as in terms of device
memory and battery (Hounslow et al., 2019). Short sampling inter-
vals (2-3s) at high resolution may reduce the probability of having
multiple behaviours within a single bout, but may drain batteries
faster, which can result in incomplete sampling designs and lower
the device's lifespan. Integrating low-frequency accelerometry with

additional sensors (e.g. time-depth recorders for marine species,
Jeantet et al., 2020), may still effectively allow the study of animal
behaviour without significantly increasing costs or reducing device
longevity (Hounslow et al., 2019). In addition, analysing such large
volumes of data can also be challenging, so we emphasize the need
for collaboration in between fields of knowledge, with ecologists
and data scientists working together for the conservation of biodi-
versity (Tuia et al., 2022). Lastly, as human activities are increasingly
impacting the planet and driving species towards extinction, it is
critical to harness technological advances for effective conservation
and to safeguard the future of our planet's species and ecosystems.

5 | CONCLUSIONS

In this study, we showed the potential of accelerometer-based
behavioural classification to improve the management and
conservation of endangered scavengers. By reliably identifying
feeding behaviours and mapping feeding hotspots, our approach
can help the detection of poisoning events earlier and optimize
management resources to high-risk areas. We further show that
combining the algorithm's confidence score with simple GPS-derived
filters can greatly improve the reliability of the identification of
feeding hotspots. Finally, our workflow, training dataset, and model
are provided in an open-access platform to facilitate the adoption
of this framework in the global management and conservation of

endangered scavengers.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Data S1. Transmitter schedule of free-roaming griffon vultures.
Data S2. Details of the model building sequence.

Figure S1. Comparison of the confidence scores of true-positive
(TP) and false-positive (FP) ‘Standing’ and ‘Feeding’ classifications,
recorded with a backpack (red) and with a leg-loop (blue) harness.
Figure S2. Using GPS-derived metrics to identify feeding hotspots,
without using acceleration-based behavioral classification.

Table S1. Full list of statistical features used to summarize each
acceleration bout.

Table S2. Results of the random forest model to classify vulture
behavior based on accelerometer data.

Table S3. Comparison of the confidence scores of true-positive and
false-positive behavioral classifications.

Table S4. Comparison of the confidence scores of true-positive and
false-positive ‘Standing’ and ‘Feeding’ classifications, recorded with

a backpack and with a leg-loop harness.

Table S5. Confusion matrix of the random forest assessing the
influence of the harness type on the performance of the algorithm.
Table S6. Comparison of the confidence scores of feeding bouts
likely to be true-positives or false-positives.

Data S3. Temporal correlation between behaviors.

Figure S3. Temporal correlation between consecutive behaviors.
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